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Introduction 
The urgent global need for robust remote sensing solutions has grown quickly in recent years, driven 
by international regulations and sustainability commitments. The European Union Regulation on 
Deforestation-Free Products (EUDR), the forthcoming Corporate Sustainability Due Diligence 
Directive (CSDDD), the Corporate Sustainability Reporting Directive (CSRD), and global net-zero 
ambitions underscore the critical necessity for advanced remote sensing tools and high accuracy 
maps to assess compliance with zero deforestation value chains, land-use changes monitoring, and 
greenhouse gas (GHG) emissions targets.  

The current landscape is marked by a variety of datasets and services to determine compliance and 
estimate non-compliance risks. However, significant challenges remain. First, there is no global 
consensus on the quality and limitations of existing datasets and systems specifically for the cocoa 
sector, which hinders their effectiveness in diverse landscapes. Second, there is limited 
transparency regarding the accuracy and performance of these systems across different contexts. 
These gaps strongly limit the applicability of such solutions. 

To begin to address these limitations, collaboratively, the World Cocoa Foundation (WCF) with the 
Alliance of Bioversity International and CIAT, as well as key partners such as WCF members, 
international research institutes, and national institutions in Ghana and Côte d’Ivoire, have 
developed a comprehensive four-tiered data assessment framework. This framework was used to 
evaluate the quality and performance of 21 of the most referenced publicly available critical datasets 
related to (1) land cover and land use change (LUC), (2) carbon and biomass estimations, and (3) 
tree-planting initiatives (agroforestry and reforestation) together with 4 platforms that use and 
combine these datasets to provide tailored analysis for a specific supply chains. By assessing 
commonly referenced and publicly accessible datasets and platforms, as well as Satelligence, a 
private solution provider (included because of their deforestation risk assessment work for WCF and 
several members on EUDR), this project ensures that these data layers can be effectively utilized for 
value chain assessments and compliance monitoring. 

The selected datasets and platforms were tested against four key criteria in Ghana and Côte d'Ivoire: 
accuracy, assessing how well the data represents reality on the ground; completeness, evaluating 
geographic, temporal, and categorical coverage as well as resolution suitability for cocoa 
landscapes; data management, examining metadata quality, accessibility, licensing, 
interoperability, and long-term usability; and inclusivity, reviewing efforts to incorporate 
smallholders and vulnerable stakeholders in dataset. 

This white paper presents a description of the assessment criteria first (full list in appendix), followed 
by sections dedicated to each of the three categories of analysis (1) land cover and land use change, 
(2) carbon and biomass, and (3) tree-planting initiatives. Each section includes: 

i. a detailed overview of the methodology used to assess the relevant datasets and platforms 
for each category,  

ii. results of the analysis,  
iii. a discussion of findings.  
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This is followed by a section on platforms and sections for conclusions and recommendations that 
explore the potential for these datasets and platforms to enable compliance and support 
sustainable land-use practices. 

Assessment Criteria 
The selection of datasets to be explored, the criteria for assessing their quality, and the development 
of the ranking system were built through a consultative approach. This collaborative process involved 
contributions from a diverse range of stakeholders, including WCF members, national institutions in 
Côte d’Ivoire and Ghana, and international organizations. Their ideas, expertise, and feedback were 
instrumental in refining and consolidating the quality assessment process during its definition. By 
incorporating insights from these key stakeholders, the methodology was tailored to address the 
unique challenges and priorities of different contexts, ensuring a comprehensive and relevant 
evaluation framework. 

The assessment of datasets and platforms in this study was based on four key areas: Accuracy, 
Completeness, Data Management, and Inclusiveness. These criteria ensure a comprehensive 
evaluation of the datasets' reliability, coverage, usability, and representativeness. A ranking system 
was applied to assign weighted scores, prioritizing critical factors like accuracy, to determine the 
overall suitability of each dataset. 

Accuracy 
Accuracy evaluates how well the datasets capture real-world land cover and land cover changes, 
ensuring the reliability of classifications. This includes: 

• Overall Accuracy: How well the dataset performs across all land cover categories. 

• Precision: The ability of the dataset to correctly classify specific land types (e.g., cocoa, 
forest). It is equivalent to 1 – commission error. 

• Recall: The ability to capture the full extent of areas of each land cover. It is equivalent to 1 – 
the omission error. 

For datasets that could not be independently validated—such as those for carbon and biomass 
monitoring and tree planting—accuracy was assessed based on the figures self-reported in the 
associated scientific publications. These reported metrics were carefully reviewed, summarized, 
and included in this report. To provide a clearer interpretation of their suitability, each dataset was 
assigned a usability score ranging from Excellent to Very Limited. 

The usability evaluation process of datasets that could not be independently validated, considered 
three main aspects. First, validation quality was examined to determine whether the dataset had 
been validated using appropriate methodologies and whether its reported accuracy was robust. 
Second, methodological limitations were assessed, identifying constraints in the dataset’s creation 
that could affect its applicability for land cover, carbon, or tree monitoring. Finally, reported 
limitations were reviewed to highlight any documented issues that might impact the dataset’s 
intended use. Where such limitations were identified, they were explicitly noted in the report to 
provide users with a comprehensive understanding of the dataset’s strengths and weaknesses. 
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Completeness 
Completeness examines whether the datasets and platforms provide adequate geographic 
coverage, temporal resolution, and data granularity. It also assesses whether they include all relevant 
land cover types and agroforestry systems and if historical data is sufficient to monitor trends such 
as deforestation and GHG emissions. Datasets with significant gaps in coverage or missing critical 
land types are scored lower in this category. 

Data Management 
Data management assesses the quality of metadata and data management practices, ensuring 
adherence to the FAIR principles (Findable, Accessible, Interoperable, and Reusable).  

Inclusiveness 
Inclusiveness measures how well the datasets represent vulnerable and smallholder communities 
within cocoa-growing regions. This criterion evaluates: 

• The presence of strategies to ensure fair representation in data collection. 

• Mechanisms that allow smallholders to view and correct their representation in the datasets. 
Datasets that fail to account for or involve smallholder communities were marked down in 
this category, as their representativeness is critical for sustainable monitoring. 

Ranking System 
The datasets and platforms were evaluated using a weighted ranking system that assigns points 
based on performance in each criterion. Accuracy was derived from the F-score, calculated using 
the precision and recall metrics for each category, and was weighted twice as heavily as other 
criteria, reflecting its critical importance. Final scores were calculated by normalizing each topic 
(Accuracy, Completeness, Data Management, and Inclusiveness) and summing the weighted values. 

This systematic approach ensures that the datasets selected for analysis are robust, reliable, and 
aligned with the goals of deforestation monitoring, carbon accounting, and tree planting 
assessments. 

The full list of criteria used in the evaluation, and their respective weight, is provided as an annex in 
the Excel file quality_assessment_results for reference. 

Land Cover and Land Use 
Remote sensing offers unparalleled benefits for forest and land cover monitoring, providing a 
comprehensive view of vast and often inaccessible areas. Its ability to deliver consistent, large-scale 
data allows stakeholders to monitor deforestation patterns, detect changes in forest cover, and 
estimate key metrics such as biomass loss over time. The multi-temporal analysis capabilities of 
satellite imagery enable the identification of seasonal variations and long-term trends, critical for 
tracking forest dynamics and implementing timely interventions. Furthermore, remote sensing is 
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cost-effective compared to traditional ground-based methods, enabling efficient and uniform data 
collection across diverse regions.  

However, the limitations of remote sensing should not be overlooked. Freely available satellite 
sensors often have limited spatial and temporal resolution, making it challenging to detect small-
scale changes or dynamic processes and challenging to determine land cover and non-forest tree 
type. Dense forest canopies and the spectral similarity of land cover types may also obscure features 
such as understory vegetation or agroforestry systems, leading to misclassification or incomplete 
assessments. Additionally, remote sensing data is susceptible to atmospheric conditions and 
requires validation through on-the-ground measurements, which can be logistically demanding and 
expensive. For uneven terrains or mixed-use landscapes, processing errors and the "mixed pixel" 
issue, where a single pixel captures multiple land cover types, can further complicate data 
interpretation. These challenges highlight the need for careful data selection, processing, and 
integration with complementary methodologies. 

Agroforestry systems, and cacao in particular, present unique challenges for remote sensing. Their 
diverse and complex nature, often involving a mix of tree species, crops, and other vegetation, 
complicates classification efforts. Lower spatial resolution imagery struggles to capture small-scale 
practices or distinguish individual trees. Moreover, optical remote sensing methods may provide 
limited information on the vertical structure of vegetation, a critical aspect of agroforestry systems. 
Addressing these limitations requires a multi-sensor, multi-scale approach, integrating ground-
based observations and advanced field surveys to enhance accuracy and reliability. Despite these 
constraints, remote sensing remains an indispensable tool for large-scale monitoring, and its 
integration with complementary techniques is essential for improving the assessment of agroforestry 
systems and forest dynamics over time. 

In recent years, the development of publicly available global datasets has significantly advanced the 
ability to monitor forests and land cover at large scales. Several datasets focus on tree cover, such 
as Dynamic World, ESA World Cover, and the widely referenced dataset by Hansen et al., 2013. These 
datasets provide foundational insights into forest extent and changes over time. However, their 
applicability to agroforestry systems, particularly cocoa cultivation, remains limited. Cocoa, being a 
tree crop, requires specialized datasets that go beyond generic tree cover data. To address broader 
deforestation concerns, other datasets have been developed to map natural forests globally. These 
include initiatives such as JRC EU, Tropical Moist Forest (TMF) layers, GLAD Forest layers, and efforts 
by WRI/SBTN focused on identifying natural lands.  

Although cocoa has not been mapped at a global scale, several country-level efforts and targeted 
initiatives provide valuable insights. In Côte d'Ivoire and Ghana, cocoa is included as a distinct land 
cover class in national mapping efforts. High-resolution satellite-based maps produced by ETH 
Zurich for 2020 further enhance this understanding, offering detailed insights specific to these 
countries. The Forest Data Partnership also recently released cocoa maps based on high resolution 
imagery for Côte d’Ivoire and Ghana. Additionally, private sector solutions, such as those developed 
by Satelligence, have created maps tailored to cocoa systems. These local datasets are critical for 
addressing the unique challenges of cocoa related deforestation and establishment of agroforestry 
systems and ensuring their integration into sustainable land-use planning and deforestation 
prevention efforts. 
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Several datasets, including TMF, Hansen et al Tree Cover Loss, GLAD, and Satelligence, provide a 
valuable tree cover or forest baseline along with associated tree cover loss or deforestation data. 
Change detection methods utilized by these datasets have proven highly efficient, with recent 
studies demonstrating accuracy rates ranging from 80% for publicly available datasets to as high as 
95% for commercial solutions. However, these assessments are primarily designed to detect 
whether a change has occurred from the baseline, without necessarily determining whether the 
change is actual forest loss. The effectiveness of these algorithms in identifying deforestation is 
therefore heavily dependent on the quality of the baseline data and its ability to accurately 
differentiate forests from other land cover types. 

The analysis is conducted in two phases: first, through a quantitative, independent quality 
assessment to evaluate the accuracy and reliability of the datasets; and second, through a 
qualitative evaluation focusing on their completeness, data management practices, and efforts to 
ensure inclusivity and representativity. 

Selected datasets 
Table 1 Selected land cover datasets, F: Datasets with Forest category available, C: Dataset with cocoa 
category available, NF: None-Forest Natural lands category available, TC: Tree cover instead of forest. 

Title Abbreviation F C NF 

Satelligence Satelligence  + + + 

Carte Occupation du Sol Ivoirien 2020 Official-CIV + + + 

The national land use map for Ghana Official-GH + + + 

Cocoa Probability model 2024a and Forest 
Persistence v0 

FDaP + +  

SBTN Natural Lands Map 2020 v1.1 SBTN-NL +  + 

Dynamic World V1 DW TC  + 

Global forest cover 2020 V1 JRC-EU-V1 +   

Global forest cover 2020 V2 JRC-EU-V2  +   

Tropical Moist Forests product – Annual Change 
v1 2020 

TMF +   

ESA World Cover ESA-WOC TC   

Global Forest Change 10% GFC-10% TC   

Global Forest Change 30% GFC-30% TC   

Forest extent, 2020 GLAD-Forest +   

ETH high-resolution maps of cocoa ETH-Cocoa  +  
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Global Pasture Watch GPW   + 

Global 30-meter Land Cover Change Dataset GLC_FCS30D +  + 

 

Table 1 provides an overview of selected datasets used for land cover quality assessment, 
highlighting their availability and relevance to three key land cover categories: Forest, Cocoa, and 
Other Natural Lands. Each dataset's capability to represent specific land cover types is indicated 
with a plus sign. 

• Forest: Some datasets, including Satelligence, Official National Maps (CIV and GH), FDaP, 
JRC-EU-V1 and V2, TMF, and GLAD-Forest, have a specific forest category, explicitly 
classifying areas as forest land cover. In contrast, other datasets, marked as "tree cover" in 
Table 1, only define forests based on a tree cover threshold, which includes any area meeting 
a certain tree cover percentage. This distinction is important, as tree cover datasets may 
encompass plantations, agroforestry systems, or other landscapes with tree presence that 
do not necessarily meet the definition of a forest. 

• Cocoa: Only a few datasets, such as Satelligence, Official National Maps (CIV and GH), and 
ETH-Cocoa, specifically include cocoa as a land cover class. 

• Other Natural Lands: Datasets like GPW, SBTN-NL, DW provide other natural land cover 
types beyond forests. 

Datasets labeled "Tree Cover" offer generalized tree cover data, which may be useful but have limited 
specificity for cocoa or natural forest classifications.  

Method Overview 

Land cover definitions 
This study strictly adheres to the following specific definitions when assigning a land cover 
classification to a given area. 

Forests: The EUDR applies the forest definition from the Food and Agriculture Organization of the 
United Nations (FAO). In the FAO definition, forests are “land spanning more than 0.5 hectares with 
trees higher than 5 metres and a canopy cover of more than 10%, or trees able to reach those 
thresholds” (Article 2, Litra 4), excluding agricultural plantations “such as fruit tree plantations, oil 
palm plantations, olive orchards and agroforestry systems where crops are grown under tree cover” 
(Article 2, Litra 6).  

Cocoa: is defined as any land where cocoa is cultivated, regardless of the growing system, age of the 
trees, or management practices. 

Non-forest natural lands: Following IPCC classification scheme, non-forest natural lands combine 
the following categories Non-Forest Wooded Lands defined as scrubland which may include 
national parks and wilderness recreational areas, Savannahs defined as a landscapes characterized 
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by a mix of grasses and scattered trees, with tree cover below 10%, often utilized for grazing, and 
Wetlands defined as non-Forest marshes. 

Others: Any land cover that does not fall under any of the previously defined categories.  

Accuracy assessment 
The accuracy assessment method employed in this study was designed using a systematic approach 
to evaluate the reliability of land cover classification across Côte d'Ivoire and Ghana. The process 
began with defining the scope of the analysis. This was done based on an initial assessment of cocoa 
distribution across administrative areas in both Côte d'Ivoire and Ghana. The original plan was to 
exclude administrative areas (districts) where no cocoa production was reported in the datasets 
used for the study, specifically Satelligence and official national data. However, as shown in Figure 
1, nearly all administrative areas contained some level of cocoa presence according to these 
datasets, making it challenging to establish clear exclusion criteria without introducing potential 
bias. 

 

Figure 1 Cacao distribution in Ghana and Côte d'Ivoire according to Satelligence 

Given these findings, we opted to conduct the analysis at the national level to ensure objectivity and 
consistency. Restricting the study area based on predefined thresholds could have led to subjective 
decisions about what should be considered noise versus real cocoa detection before conducting 
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validation. Additionally, applying a uniform methodology across both countries was critical for 
ensuring that the results remained comparable. 

defining the sampling area, with a focus on regions where high-resolution imagery from 2020 was 
freely available. Since not all areas within the study regions met this criterion, the analysis was 
limited to locations where such data was accessible. A grid-based sampling strategy was applied, 
and 500x500m cells were randomly selected. These cells were carefully reviewed by interpreters to 
ensure the availability of high-quality imagery (e.g., free of cloud cover and shadows) from 2020. The 
sampling ensured that the selected sites represented the overall class distribution, enabling a robust 
and unbiased assessment of land cover accuracy within the study areas. 

As shown in Figure 2, the sampling methodology was based on stratified random sampling using land 
cover data from Satelligence. Strata were carefully defined to include key land cover classes: Cocoa, 
which was further divided into two substrata (cocoa without shade and cocoa with shade), Forest, 
which included a substratum for regrowth, Non-forest natural lands, and Other land types. This 
ensured that the sampling captured the full range of land cover variability in the study region. To 
achieve a target margin of error within ±3.5% at a 95% confidence interval for overall accuracy, 
sufficient sample points were selected for each stratum in accordance with the guidelines of 
Olofsson et al., 2014. 

The validation process involved independent visual validation of each sample point using high-
resolution imagery. Each point was validated independently by at least four interpreters to ensure 
consistency and minimize bias. In cases where disagreements occurred, a consensus process was 
employed, and discrepancies were discussed among the interpreters to reach a final collective 
decision. 

 

Figure 2 Overview of the sampling strategy 

Accuracy metrics were calculated to provide both overall and class-specific evaluations of land 
cover classification. Overall accuracy was reported with a confidence interval (e.g., X% ± Y%), 
offering a general measure of the classification's reliability. For each land cover class, precision (1 – 
commission error) and recall (1 – omission error) were calculated, also with confidence intervals, to 
provide deeper insights into class-specific performance.  
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To identify the most suitable publicly available datasets, we recommend applying a two-step 
selection approach. First, a minimum precision threshold is set to ensure the dataset provides a 
reliable classification. Among datasets that meet this initial precision requirement, we then prioritize 
those with the highest recall to minimize the risk of omitting deforestation events. This approach 
balances data reliability and completeness, ensuring that selected datasets effectively capture 
forest changes while maintaining acceptable accuracy. 

To ensure a fair and robust evaluation, we implemented measures to manage both bias and 
uncertainty in the assessment. Bias management was addressed by adjusting for differences 
between the validation strata (which were initially based on Satelligence data) and the dataset strata, 
ensuring that no dataset, including Satelligence, had an inherent advantage. This approach follows 
the methodology outlined by Stehman (2014) to maintain the integrity of comparisons across 
datasets. Uncertainty management was also a key consideration, particularly in estimating 
Satelligence’s accuracy before validation, which was critical for determining the appropriate sample 
size needed to achieve the targeted confidence interval. To mitigate potential inaccuracies, we 
increased sampling by 40% for key categories, such as shaded cocoa, full-sun cocoa, forests, and 
non-forest natural lands. This adjustment helped reduce the impact of uncertainty and ensured a 
more reliable accuracy assessment. 

Composite Analysis 
Relying on a single land cover map yields limited results due to inherent variations in definitions, 
spatial and temporal resolution, and classification systems used across different datasets. 
Recognizing this challenge, the Forest Data Partnership (FDaP) and the AIM4Forests Programme 
developed and promoted the Convergence of Evidence approach as a strategy to address these 
inconsistencies. By integrating multiple datasets, this approach enhances accuracy and reliability, 
providing a more comprehensive and nuanced understanding of land cover and land use dynamics. 
To facilitate its implementation, WHISP, a tool hosted and developed by the FAO-led Open Foris 
platform, was created as a practical solution. WHISP enables users to apply the Convergence of 
Evidence approach effectively, ensuring more precise and reliable land cover assessments. 

In this study, we tested this approach by selecting a set of datasets that individually demonstrated 
good accuracy for key targeted land cover classes. The primary objective of this composite map is to 
establish a baseline for EUDR compliance monitoring with a cutoff date set to the end of 2020.  These 
datasets were then combined using a decision tree methodology, integrating their strengths while 
addressing their individual limitations. The resulting map was subsequently tested against the 
validation datasets to evaluate whether the quality of the combined map had improved.  

In compliance-driven applications, it is necessary to assign a single, definitive land cover category to 
each pixel, whether it is forest, cocoa, or another category, to determine deforestation risks. While 
separate maps per category could provide additional confidence indicators, a final classification 
decision is still required for compliance monitoring. The composite approach streamlines this 
decision-making process while ensuring that land cover is assigned based on the most reliable 
available evidence. 

This composite analysis is explorative and serves to test what can be achieved with such an 
approach rather than providing the optimal set of rules for constructing a composite dataset. A key 
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limitation of this analysis is that the same validation data was used both to select and test datasets, 
potentially introducing bias and inflating accuracy estimates. Unless independent validation is 
conducted, there is no straightforward way to fully address this methodological limitation. However, 
the impact of using the same data points for both selection and evaluation is limited. This is because 
the actual category and location of the validation points were not used to generate the composite 
layer, unlike in a traditional classification model where training data directly influences the output. 
Therefore, while this analysis does not define the best possible composite methodology, the results 
still provide indicative insights into the potential effectiveness of this approach, in line with the 
original objectives of the assessment. We acknowledge that further research is needed to determine 
the optimal dataset combination for maximizing recall or precision in specific categories and to 
robustly validate the results. 

Results 

Accuracy assessment 

Sampling 

 

Figure 3 Validation sites in Ghana and their respective class distribution 
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Figure 4 Validation sites in Cote D'Ivoire and their respective class distribution 

As shown in Figure 3 and Figure 4, the stratified random sampling process yielded a total of 680 sites 
for validation by interpreters. The distribution of key land cover categories within the validation areas,  
derived from Satelligence data, closely mirrored the country-level distribution, also based on 
Satelligence data, with differences not exceeding 5%. This alignment ensures a representative and 
robust sampling framework for the analysis. 

Cocoa 
As shown in Figure 5, all datasets analyzed for their accuracy at identifying cocoa achieved a 
precision above 70% in Côte d’Ivoire. The FDaP and ETH-Cocoa datasets demonstrated the highest 
precision, with scores of 96% ± 4% and 91% ± 7%, respectively. In comparison, the Satelligence 
datasets and official national data showed lower precision, with scores of 75% ± 9% and 72% ± 14%, 
respectively. For recall, Satelligence outperformed the other datasets, achieving the highest score of 
90% ± 11%. The ETH-Cocoa, FDaP, and official national data datasets followed with recall scores of 
80% ± 12%, 44% ± 12%, and 41% ± 12%, respectively. 
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Figure 5 Precision and recall for cocoa in CIV 

As shown in Figure 6, in Ghana, all datasets demonstrated good precision scores, with FDaP and 
official national data achieving the highest precision at 83.0% ± 12.2% and 82% ± 15%, respectively. 
The ETH-Cocoa and Satelligence datasets followed closely, with precision scores of 79% ± 8% and 
78% ± 8%, respectively. 
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For recall, Satelligence obtained the highest score, reaching 87% ± 13%, closely followed by the ETH-
Cocoa dataset with 86% ± 13%. The official national data achieved a moderate recall of 64% ± 12%, 
while FDaP recorded the lowest recall at 25% ± 10%. 

 

Figure 6 Precision and recall for cocoa in GH 
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Forests 
As shown in Figure 7, for forest identification in Côte d’Ivoire, Satelligence and the locally developed 
datasets demonstrated significantly higher precision compared to global datasets. Satelligence 
achieved the highest precision at 87% ± 6%, followed by the official Côte d’Ivoire dataset with 73% ± 
10%. Among global forest maps, the JRC-EU-V2 dataset had a lower precision of 64% ± 12%, while 
the GLAD-Forest dataset displayed a significant imbalance, with a notably low precision of 39% ± 
7%. Tree cover maps performed even worse in terms of precision, with Hansen-30% scoring 35% ± 
6%, ESA- WOC achieving 36% ± 8%, and DW recording 36% ± 7%. These results indicate that while 
global datasets and tree cover maps capture forested areas, they often misclassify other land types 
as forests, leading to lower precision. 

In terms of recall of country level datasets, which measures the ability to detect all forested areas, 
the official Côte d’Ivoire dataset achieved a recall at 81% ± 12%, followed by Satelligence at 71% ± 
13%. Global forest maps, despite their lower precision, generally exhibited higher recall. The JRC-EU-
V2 dataset reached 80% ± 12%, while GLAD-Forest had the highest recall at 95% ± 7%, though at the 
cost of very low precision. Tree cover maps followed a similar pattern, with DW achieving 97% ± 3% 
recall and GFC-10% reaching 95% ± 7%, indicating their ability to detect tree-covered areas broadly. 
However, GFC-30%, which uses a stricter threshold, had a lower recall of 56% ± 13%, as it fails to 
capture open forests that fall under the FAO 10% canopy cover definition. This highlights a trade-off 
between precision and recall, where tree cover maps and global datasets tend to overestimate forest 
presence, while locally developed datasets provide more balanced results. 
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Figure 7 Precision and recall for forest in CIV 

In Ghana, the highest precision scores were observed in locally tailored datasets and select global 
forest datasets. s-FDaP, SBTN-NL, and the official national dataset performed best, achieving 
precision values of 68% ± 18%, 66% ± 11%, and 63% ± 13%, respectively. Among global datasets, 
JRC-EU-V2 demonstrated a relatively good precision of 63% ± 11%, whereas GLAD-Forest and JRC-
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EU-V1 had lower precision at 53% ± 9% and 52% ± 9%, respectively. Tree cover datasets, such as DW 
(43% ± 8%) and ESA-WOC (41% ± 10%), had the lowest precision. 

In terms of recall, SBTN-NL excelled at 87% ± 8%, followed by the official Ghana dataset at 63% ± 
13%. The JRC-EU-V2 dataset also performed well, achieving 88% ± 7% recall, while GLAD (94% ± 6%) 
and JRC-EU-V1 (95% ± 5%) exhibited extremely high recall, meaning they effectively captured most 
forested areas but at the cost of lower precision. In contrast, tree cover datasets such as DW and 
ESA-WOC demonstrated inconsistent performance, pairing low precision with variable recall.  

Satelligence did not achieve strong results country-wide in Ghana, with a precision of 59% ± 11% and 
a recall of 83% ± 10%. Further inspection revealed that these low scores were primarily due to an 
overestimation of forests in savanna lands, where areas with sparse trees under 5 meters were 
misclassified as forest, contributing to over 60% of the errors.  
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Figure 8 Precision and recall for forest in GH 

Non-forest natural lands 
For non-forest natural lands, all datasets achieved relatively low scores, suggesting that these land 
cover classes may not have been prioritized during dataset development and that further research is 
needed to improve their mapping accuracy. Among the tested datasets, the most balanced 
performance was observed in Ghana with Satelligence, which achieved a precision of 60% ± 14% 
and a recall of 63% ± 12%. 
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In comparison, most other datasets scored in the low 40% range for both precision and recall in both 
Côte d’Ivoire and Ghana, indicating significant challenges in accurately identifying and classifying 
non-forest natural lands across these regions. These results emphasize the need for enhanced 
methodologies and data tailored to these often-overlooked land cover types. 

 

Figure 9 Precision and recall for non-forest natural lands in GH 
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Figure 10 Precision and recall for non-forest natural lands in CIV 

 

Composite Analysis 
Figure 11 illustrates the decision tree used to construct the composite land cover dataset. This rule-
based approach follows a sequential, hierarchical structure that prioritizes precision first and then 
progressively increases recall to enhance overall coverage. The tree reads from top to bottom, with 
each pixel being assigned a land cover category based on the most reliable datasets available. Once 
a pixel is assigned a value, it remains fixed throughout the process, ensuring consistency in 
classification. 



 

 
20 

 

 

Figure 11 Decision tree to allocate a class to a given pixel. 

 

Composite Map Construction Logic 
1. Forest Layer (High Confidence Zones) – The process begins by assigning forest classification 

to pixels where there is agreement among the three best-performing datasets in terms of 
precision. This ensures that the most reliable forest pixels are established first. 

2. Cocoa Layer (High Precision Priority) – Cocoa pixels are then assigned using the FDaP and 
ETH-Cocoa datasets, both of which have demonstrated very high precision in cocoa 
classification. 

3. Expanding Forest Recall – To enhance forest coverage while maintaining precision, additional 
forest pixels are added based on a less restrictive rule, improving recall without significantly 
increasing false positives. 

4. Expanding Cocoa Recall – Additional cocoa pixels from official datasets are incorporated to 
further improve the completeness of the cocoa classification. 
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5. Natural Non-Forest Layer (Least Reliable Class) – Finally, non-forest natural ecosystems are 
assigned, recognizing that this category has the lowest precision and recall across all maps. 

By structuring the process in this way, we ensure that high-confidence forest pixels are prioritized, 
followed by high-precision cocoa pixels, and finally, an increase in recall for both forest and cocoa 
before assigning the least reliable land cover category. 

The composite approach yielded high accuracy, delivering consistent and balanced results across 
land cover categories in both Côte d’Ivoire and Ghana. In Côte d’Ivoire, the composite approach 
achieved an overall accuracy of 75% ± 7%, with particularly strong performance for Cocoa (precision: 
80% ± 9%, recall: 88% ± 11%) and Forest (precision: 84% ± 11%, recall: 71% ± 12%). The Other 
category also performed well with a precision of 72% ± 11% and a recall of 81% ± 10%, though non-
forest natural lands remained challenging, scoring a precision of 49% ± 36% and a recall of 33% ± 
28%. 

In Ghana, the composite approach achieved an overall accuracy of 60% ± 7%, demonstrating 
balanced results across categories. The cocoa category performed strongly with a precision of 73% 
± 11% and a recall of 87% ± 14%, while Forest attained a precision of 79% ± 15% and a recall of 54% 
± 14%. The Other category achieved a precision of 79% ± 12%, but its recall was lower at 39% ± 11%. 
Conversely, non-forest natural lands had a high recall of 90% ± 8% but lower precision at 42% ± 9%. 

The composite approach outperformed any single publicly available dataset in forest precision and 
achieved the highest recall for cocoa. It performed less well for non-forest natural areas (7th in Côte 
d’Ivoire, 3rd in Ghana in term of precision), as the decision tree was not optimized for that category. 

Full Criteria Assessment  
Table 2 and 3 present the precision and recall for each land cover dataset, along with scores for 
completeness, data management, inclusiveness, and the resulting final score. In the background, 
precision and recall are combined using the F-score, which favors datasets with balanced 
performance. This value is then weighted twice as much as the other criteria in calculating the final 
score. 

Table 2 Overall assessment scores for land cover datasets in CIV 
 

Precision Recall Completeness Data 
Management 

Inclusiveness Final 
Score  

Forest 
Satelligence 87% 70% 70% 65% 66% 73% 
Official-CIV 73% 81% 46% 65% 22% 63% 
EU-JRC-V2 64% 80% 53% 100% 0% 62% 
EU-JRC-V1 48% 89% 53% 100% 0% 57% 
DW 36% 97% 57% 100% 0% 52% 
GFC-10% 35% 95% 53% 100% 0% 51% 
FDaP 61% 34% 51% 98% 33% 51% 
ESA-WOC 36% 80% 50% 100% 0% 50% 
GFC-30% 38% 56% 53% 100% 0% 48% 
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GLC 32% 95% 38% 100% 0% 47% 
TMF 50% 33% 49% 100% 0% 44% 
GLAD-
Forest 

39% 52% 49% 22% 0% 36% 

 
Cocoa 

Satelligence 75% 90% 70% 65% 66% 75% 
ETH-Cocoa 91% 80% 42% 100% 0% 69% 
FDaP 96% 44% 51% 98% 33% 60% 
Official-CIV 72% 41% 46% 65% 22% 49% 

 

Table 3 Overall assessment scores for land cover datasets in GH 
 

Precision Recall Completeness Data 
Management 

Inclusiveness Final 
Score  

Forest 
Satelligence 59% 83% 70% 65% 66% 68% 
EU-JRC-V2 63% 88% 53% 100% 0% 64% 
EU-JRC-V1 51% 94% 53% 100% 0% 60% 
DW 43% 83% 57% 100% 0% 55% 
GFC-10% 36% 99% 53% 100% 0% 52% 
Official-GH 63% 63% 46% 25% 22% 49% 
ESA-WOC 41% 56% 50% 100% 0% 48% 
GLAD-
Forest 

52% 94% 49% 22% 0% 48% 

GFC-30% 44% 46% 53% 100% 0% 48% 
GLC 33% 89% 38% 100% 0% 47% 
FDaP  68% 24% 51% 98% 0% 42% 
TMF 47% 34% 49% 0% 0% 30%  

Cocoa 
Satelligence 73% 87% 70% 65% 66% 74% 
ETH-Cocoa 78% 87% 42% 100% 0% 67% 
Official-GH 83% 64% 46% 25% 22% 55% 
FDaP - 
Cocoa 

82% 25% 51% 98% 0% 43% 

 

Discussion  
All datasets evaluated in this study were tested using a national-level geographic scope and based 
on a strict application of the FAO forest definition. However, it is important to note that several of 
these datasets were not originally designed for this specific scope or definition. For example, 
Satelligence data were developed and optimized primarily for the cocoa-growing regions of Ghana, 
rather than for national-scale application. Similarly, the FDaP forest layer was designed to identify 
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naturally regenerating forests with minimal signs of human disturbance, which excludes certain 
forest types that still fall within the FAO definition. In addition, datasets based on tree cover, such as 
GFC and DW, were not designed to differentiate between natural forests and tree crops, leading to 
potential misclassification in areas with agricultural tree cover.  

While some datasets were originally developed for different geographic scopes or definitions, the 
accuracy results presented in this study are robust and valid for assessing land cover, in particular 
forests and cocoas areas, as defined within the scope and methodology of this study. These results 
may not reflect how the same datasets perform in other contexts or regions. 

Strengths and Limitations of Global Datasets 
Global land cover datasets, while widely available and well-documented, exhibit significant 
limitations in the context of deforestation-free compliance, particularly in complex landscapes like 
Ghana and Côte d’Ivoire. These datasets are unable to effectively differentiate between forests and 
cocoa systems, which compromises their applicability for monitoring agroforestry, cocoa-driven 
deforestation, and cocoa driven LUC for GHG accounting.  

Despite these limitations, global datasets offer strengths in other areas. Their comprehensive 
documentation and accessibility make them transparent and easy to integrate into analyses. 
Furthermore, the use of consistent methodologies across regions ensures that the data is 
comparable, enabling streamlined integration into global assessments. While these features make 
global datasets useful for broad-scale applications, they fall short of meeting the requirements of 
localized deforestation-free compliance. 

Strengths and Limitations of Local Datasets 
Locally tailored datasets demonstrate significantly higher precision compared to global datasets, 
making them more suitable for deforestation-free compliance. Official national datasets, while 
slightly less accurate than commercial datasets, provide robust and comprehensive data, offering a 
valuable public resource. However, these datasets often lack proper documentation, metadata, and 
accessible data management practices, which can limit their usability and transparency. 

Emerging Alternatives 
Emerging datasets, such as those developed by the Forest Data Partnership, represent promising 
alternatives. These datasets have shown high precision but low recall, often underestimating areas 
such as planted cocoa systems. While they are still evolving, future iterations have the potential to 
become more reliable as they integrate more inclusive and representative data.  

Commercial Solutions 
As shown in Table 2 the service provided by Satelligence currently offers the most robust and 
comprehensive land cover maps. These solutions are good in documentation and metadata, but 
their resources are hosted exclusively on proprietary platforms, which may limit long-term 
accessibility. Additionally, while Satelligence integrates local data to improve relevance, a formal 
inclusiveness strategy for engaging diverse stakeholders is currently lacking. 
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As mentioned initially, Satelligence was included in this study to support ongoing WCF led work and 
to provide participating WCF members with the quality assurance needed to confidently use their 
analyses and service. Other commercial providers have not been assessed in this study, but they 
may also have highly accurate maps; it is recommended that 3rd party accuracy assessments are 
conducted by all commercial providers and shared publicly so that interested parties can make 
informed decisions on which data and service to use. 

To enhance their usability and accessibility, it is recommended that commercial solutions publish 
metadata and documentation in public repositories. Additionally, private service providers should be 
encouraged to establish commercial agreements with platforms to improve data availability (e.g., 
Satelligence on GFW). This would facilitate broader access to high-quality datasets while ensuring 
their integration into widely used monitoring frameworks. Also recommended that commercial 
solutions have third party assessments of accuracy that are made publicly available. Moreover, 
developing a structured inclusiveness strategy would further strengthen the credibility and 
applicability of commercial datasets in diverse contexts. Despite these challenges, commercial 
solutions remain a valuable resource for land cover monitoring. 

Composite Analysis 
The composite approach demonstrated high overall accuracy and balanced performance across 
land cover categories in Côte d’Ivoire and Ghana, with strong results for Cocoa (Côte d’Ivoire: 
precision 80% ± 9%, recall 88% ± 11%; Ghana: precision 73% ± 11%, recall 87% ± 14%) and Forest 
(Côte d’Ivoire: precision 84% ± 11%, recall 71% ± 12%; Ghana: precision 79% ± 15%, recall 54% ± 
14%). However, non-forest natural lands showed lower precision and recall, highlighting 
classification challenges in those categories. 

While the precision and recall for individual categories are not the highest obtained across all tested 
methods, this composite approach provides a balanced and consistent performance across all land 
cover types. These results highlight the value of integrating multiple datasets in a composite 
framework, offering a practical and reliable solution for achieving robust land cover mapping using 
heterogeneous data sources. 

However, it is important to note that the datasets used in this composite approach were selected 
based on the results of the validation process. As a result, the independence of the test sampling is 
compromised, which may introduce bias and artificially inflate the accuracy estimates. This 
limitation should be considered when interpreting the results of this analysis. 

Limitations 

Snapshot in Time 
This study validates land cover datasets for the year 2020, offering a single-year assessment based 
on a specific cut-off date, which does not fully capture temporal land cover changes. However, 
change detection methods achieve 80–95% precision in identifying deviations from the baseline. 
Most errors, particularly false positives, originate from inaccuracies in the baseline data, such as 
misclassifying tree crops as forests, rather than flaws in the detection algorithms. However, some 
coarser-resolution products, such as GFC with 30m resolution, have higher omission rates for small-
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scale deforestation events (sub-pixel size), which are often associated with smallholder-driven 
deforestation. Given that this study was conducted for a single year, this effect could not be 
assessed. Consequently, the reliability of detected changes is closely tied to the quality of the 
baseline data. While 2020 is not expected to be an outlier in terms of data quality, datasets covering 
additional years using a consistent methodology are expected to yield comparable results. 

Composite Approach Considerations 
The validation process used the same dataset for both selection and accuracy assessment, which 
may introduce bias and potentially inflate performance estimates. While the composite approach 
improves consistency across different land cover types, further research is needed to refine these 
methods and validate results independently. Initial findings indicate promise, but additional 
evaluations are required to enhance dataset integration and ensure robustness across varying 
landscapes and conditions. 

 

Carbon and Biomass 

The Role of Remote Sensing in Carbon Removal Assessment 
Under the draft GHG Protocol, reporting on carbon removals requires the use of primary, site-specific 
data derived directly from a company’s operations or value chain. Remote sensing can support this 
process, but only when calibrated with ground-based measurements such as inventory plots or 
repeated carbon stock sampling. High-resolution technologies like LiDAR or UAV-based 
photogrammetry can provide detailed insights into above-ground biomass, but their outputs must be 
validated with field data to meet reporting standards. These methods may be considered equivalent 
to direct measurements when properly calibrated, though they are not yet fully applicable to all 
carbon pools, such as soil carbon. To comply with the GHG Protocol, removal quantification must 
use Tier 2 or Tier 3 methods, incorporating empirical data and statistically sound uncertainty 
estimates (WRI & WBCSD, 2022). 

Given these requirements, no freely available remote sensing datasets currently meet the precision 
and calibration standards needed for carbon removal assessments. Commercial solutions, which 
integrate drone-based surveys, airborne LiDAR, and machine learning models trained on high-
resolution imagery and field data, offer more details analysis. These methods were not assessed 
within this study. 

Public datasets, including tree canopy height layers discussed in the Tree Planting section, may 
support landscape-scale monitoring, but lack the granularity and local calibration needed for 
accurate removal estimation at the farm level. For these reasons, this section focuses on emissions 
from deforestation, rather than in-farm carbon removals. Further guidance on GHG accounting in 
cocoa supply chains is available in the GHG Accounting Manual for Cocoa, developed by Quantis 
and WCF (Rizzo et al., 2025). 
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Selected datasets 

Global Forest Carbon Fluxes (2001–2023) 
The GFCF dataset (Harris et al., 2021) provides a comprehensive evaluation of net forest carbon 
fluxes by calculating the balance between carbon emissions and removals across global forests. 
Using IPCC guidelines, this dataset includes detailed layers on cumulative carbon emissions from 
forest disturbances, carbon removals through forest regrowth, and net carbon exchange.  

Satelligence 
The Satelligence platform integrates 20 years of data with its land cover datasets to support Scope 3 
carbon reporting using linear discounting. Its aboveground biomass modeling incorporates data 
from multiple satellite sources, including Sentinel-1, Sentinel-2, Landsat, ALOS PALSAR, GEDI, and 
ICESAT. This approach is occasionally validated with airborne LiDAR and field measurements, 
ensuring robust and precise carbon accounting insights.  

FCPF Carbon Fund – Taï National Park Emission Reductions Project 
This project supports emission reduction assessments through a robust, sampling-based approach 
for land cover change detection. It combines hybrid machine learning with human visual 
interpretation, leveraging diverse satellite imagery such as ESA CCI and Landsat, alongside multiple 
change detection algorithms including BFAST, CUSUM, CCDC, and LandTrendR. Rigorous cross-
validation techniques and strict quality control processes ensure high accuracy and minimized bias 
in results. The systematic 1km x 1km sampling grid enables consistent, long-term monitoring of land 
cover changes with a relative sampling error of less than 15%, providing a reliable framework for 
emission reduction and biomass assessments. 

Method Overview 
A quantitative assessment of the datasets for carbon and biomass monitoring was not conducted in 
this study; an evaluation would require extensive and resource-intensive fieldwork beyond the scope 
of this analysis. Instead, to evaluate the usability of each dataset within the context of cocoa supply 
chain Scope-3 reporting, we conducted a structured assessment of their strengths and weaknesses. 
This evaluation was based on a systematic review of scientific literature, focusing on three key 
aspects. First, we examined validation quality, assessing whether the dataset was validated using 
appropriate methods and if the results demonstrated robust accuracy. Second, we analyzed 
methodological limitations, identifying any constraints in the dataset’s creation that could impact its 
suitability for carbon monitoring. Lastly, we reviewed reported limitations, considering documented 
constraints that might affect the dataset’s intended application. This structured approach ensured a 
comprehensive assessment of each dataset’s reliability and relevance for Scope-3 reporting in the 
cocoa sector.  

In addition to evaluating datasets usability for carbon and biomass monitoring, we conducted a 
systematic review of metadata and documentation to assess completeness and data management. 
Completeness examines whether the datasets and platforms provide adequate geographic 
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coverage, temporal resolution, and data granularity. It also considers if historical data is sufficient to 
monitor GHG emissions. Data management assesses the quality of metadata and data 
management practices, ensuring adherence to the FAIR principles (Findable, Accessible, 
Interoperable, and Reusable). This evaluation considers the clarity, completeness, and accessibility 
of dataset documentation. 

Overall Assessment 
The overall assessment of carbon datasets is presented in Table 4. Satelligence achieved the highest 
final score of 64%, with balanced performance in usability (66%), completeness (66%), and data 
management (57%), reflecting its robustness as a tailored carbon monitoring solution. The Global 
Forest Carbon Fluxes (GFCF) dataset followed with a final score of 59%, excelling in data 
management (96%) and completeness (73%), but scoring lower in usability (33%), which highlights 
its reliance on suboptimal baselines for complex landscapes. Satelligence and GFCF achieved 
similar overall scores, but for different reasons. Satelligence demonstrated strength in providing a 
more reliable option for carbon analysis, while GFCF remains a solid publicly available alternative, 
particularly for applications that require strong data management practices. However, GFCF relies 
on global datasets, which lack the precision needed for detailed local analysis, making it less 
suitable for region-specific assessments. 

Table 4. Overall assessment scores for carbon datasets 
 

Usability Completeness Data 
Management 

Final Score 

Satelligence Good 66% 57% 64% 

GFCF Limited 73% 96% 59% 

 

Since the FCPF Carbon Fund – Taï National Park Emission Reductions Project is a method rather than 
a standalone dataset and has only been applied at a sub-country level in Côte d'Ivoire, it could not 
be fully assessed using the same criteria as the other datasets. As a result, it is not included in Table 
4. 

Global Forest Carbon Fluxes (2001–2023) 

Self-reported validation 
The validation of the GFCF results was conducted through a comparative analysis with the Global 
Carbon Project (GCP), a globally recognized initiative that compiles and harmonizes carbon cycle 
data from diverse scientific studies. The Global Carbon Project aggregates findings from various 
sources to establish a comprehensive and standardized understanding of the Earth's carbon fluxes. 

To assess the accuracy and consistency of the GFCF findings, the authors compared their globally 
aggregated results against the GCP’s global carbon budget (2001–2018). This comparison provided 
insights into carbon sources and sinks, with a particular focus on land-use change emissions, and 
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forest carbon fluxes. While the two datasets are not directly comparable due to differences in scope, 
data sources, methodologies, and reporting structures, the analysis highlighted general alignment in 
key trends and totals. Specifically, total carbon sources were estimated at 42.0 GtCO₂ yr⁻¹ in this 
study, compared to 37.3 GtCO₂ yr⁻¹ in GCP (+12.6%), while total carbon sinks were 41.4 GtCO₂ yr⁻¹ 
in this study, versus 36.1 GtCO₂ yr⁻¹ in GCP (+14.7%). 

Additionally, the authors conducted sensitivity analyses to evaluate how different data sources and 
model assumptions influenced overall GHG flux estimates at various spatial scales. This approach 
helped quantify uncertainties and assess the robustness of the study’s carbon flux estimates. The 
full results of the sensitivity analysis are provided as supplementary material of the publication1. 

Warning: All validation and sensitivity analyses were conducted at global and regional scales, 
meaning that these results may not necessarily hold at the local scale. As shown in our analysis, 
accuracy and consistency vary significantly when applied to specific landscapes, such as cocoa-
growing regions in Côte d’Ivoire and Ghana. Therefore, caution should be exercised when 
extrapolating these findings to local contexts. 

Discussion 
Usability 
The GFCF is the most complete publicly available resource for carbon flux analysis. Its broad scope 
and accessibility make it a preferred choice for studies that rely solely on public data sources, 
providing valuable insights into carbon emissions, removals, and net fluxes across global forests. 

The dataset relies heavily on GFC datasets (Hansen et al., 2013)as its forest cover and loss baseline. 
While this baseline provides global consistency, it has proven suboptimal in complex and 
fragmented landscapes, such as cocoa-growing regions in Côte d’Ivoire and Ghana. This limitation 
necessitates caution when using the carbon flux dataset in these specific contexts, as it may not 
accurately capture the complex dynamics of change within these landscapes. 

A notable limitation of the dataset is its lack of year-specific data for forest loss or gain, requiring 
users to integrate external sources such as (Hansen et al., 2013) for temporal specificity in change 
detection. However, given the identified limitations of this dataset in Côte d’Ivoire and Ghana, this 
integration must be approached carefully to avoid inaccuracies in year-specific assessments. 

Other forest datasets may also be used, but to be suitable, they must offer a long and consistent 
time-series of deforestation detection, ideally spanning at least 20 years. The key challenge in 
developing such datasets is establishing a reliable baseline of forest cover from two decades ago, a 
period when high-resolution imagery was scarce and modern publicly available satellite datasets 
such as Landsat 8 and 9, Sentinel-1, and Sentinel-2 did not yet exist. As seen in this study, defining a 
forest baseline for 2020 in critical cocoa landscapes already presents significant challenges, 
underscoring how difficult it is to construct a robust and consistent long-term deforestation dataset. 

Currently, only a few publicly available datasets provide such historical deforestation time series, 
including Hansen et al. (2013), TMF, and GLAD. As with land cover analysis, a convergence of 

 
1 Available here : https://static-content.springer.com/esm/art%3A10.1038%2Fs41558-020-00976-
6/MediaObjects/41558_2020_976_MOESM1_ESM.pdf 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41558-020-00976-6/MediaObjects/41558_2020_976_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41558-020-00976-6/MediaObjects/41558_2020_976_MOESM1_ESM.pdf
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evidence approach may be the most appropriate, combining results from Hansen et al. and TMF 
while thoroughly assessing uncertainties in the outputs. However, from our current knowledge, such 
a method has not been extensively tested and would require further research to validate its 
effectiveness. 

While some official historical land cover datasets exist, they often lack the consistency and 
robustness of newer datasets, limiting their utility for long-term carbon flux analysis. To address this 
gap, countries are encouraged to develop and provide high-quality historical data using consistent 
methodologies. Such efforts would significantly enhance the reliability of long-term carbon 
assessments and improve the dataset’s applicability for historical trend analysis. 

Overall, the GFCF dataset serves as a valuable dataset for carbon flux analysis on a global scale but 
requires careful consideration of its limitations and integration with complementary datasets for 
site-specific assessments. 

Completeness 
GFCF dataset offers strong capabilities in geographic and temporal coverage, making it a valuable 
resource for carbon emissions assessments over time. It provides excellent global coverage, 
ensuring its relevance for monitoring the cocoa value chain across different regions. Additionally, its 
temporal scope is excellent, offering sufficient historical data (over 20 years) to support GHG 
assessments. The dataset is also well-documented, with its methodology published in a peer-
reviewed journal, ensuring transparency and credibility. 

However, the dataset has limitations in its spatial resolution, definitions, and maintenance reliability. 
Its limited spatial resolution restricts its ability to precisely analyze cocoa landscapes at the plot 
level, which may affect its usability for localized land use assessments. Similarly, its land cover 
classifications do not fully align with FAO forest definitions. Its validation and uncertainty 
documentation are rated as good. Additionally, its communication about its maintenance reliability 
is limited, raising concerns about whether it will be regularly updated to support long-term 
monitoring efforts. 

Data management 
The GFCF dataset demonstrates strong data accessibility and management features, making it a 
well-structured resource for carbon flux assessments. It is hosted on a platform that allows access 
through an API, enabling seamless integration into analytical workflows. Additionally, it supports 
data downloads for offline analysis, providing flexibility for users working in different environments. 
The dataset is made available under a Creative Commons Attribution 4.0 International License, 
ensuring open access and ease of use. Furthermore, its metadata is published on Google Earth 
Engine, a widely recognized data platform that enhances discoverability and accessibility. 

A key strength of this dataset is its detailed and well-documented metadata, which provides clear 
and comprehensive information on its methodology, structure, and limitations. This level of 
transparency significantly improves usability and reliability, allowing researchers and practitioners 
to make informed decisions when applying the dataset for carbon flux monitoring, deforestation 
analysis, and other environmental assessments. 
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Satelligence 

Self-reported Validation 
Satelligence validated its deforestation detection system through a series of case studies across 
multiple regions, comparing its accuracy and timeliness with other available systems. This validation 
process was conducted for both forests and agroforestry systems, ensuring applicability across 
different land cover types. The validation relied on visual interpretation of Sentinel-2 and Planet 
imagery, supplemented with ground truth data from field partners. This approach ensured that the 
detection system specifically identified deforestation rather than other forms of tree cover loss, such 
as plantation clearing. 

Additionally, Satelligence's above-ground biomass modeling has been calibrated and validated using 
airborne LiDAR and field measurements, confirming the robustness and accuracy of its carbon stock 
estimations for both forests and agroforestry systems. A peer-reviewed publication, jointly submitted 
with the European Space Agency (ESA), presents the methodology and assessment results and is 
currently under review. However, until the publication is released, quantitative results cannot be 
publicly shared. While these results have been reviewed as part of this study, they could not be 
formally included in this report. 

Discussion 
Usability 
Satelligence provides a comprehensive and reliable Scope-3 reporting service, leveraging its 
accurate cover maps. This enables precise insights for carbon accounting making it a valuable tool 
for organizations seeking to meet sustainability targets and ensure transparency in supply chain 
reporting. 

Satelligence's aboveground biomass modeling integrates diverse satellite data sources, including 
Sentinel-1, Sentinel-2, Landsat, ALOS PALSAR, GEDI, and ICESAT. This multi-sensor approach is 
occasionally validated with airborne LiDAR and field measurements, significantly enhancing the 
accuracy and reliability of biomass estimates. Such integration ensures robust data outputs for 
carbon monitoring and compliance purposes. 

The platform's methodological documentation is only available upon request, while training 
materials and metadata are publicly accessible but hosted exclusively on Satelligence’s platform. 
This limited accessibility poses challenges for long-term transparency and broader stakeholder 
engagement. 

Overall, Satelligence offers a robust and reliable solution for carbon and biomass monitoring, with 
the integration of locally measured data leading to higher accuracy. Addressing its documentation 
accessibility would further enhance its utility and transparency for a wide range of users. 

Completeness 
The Satelligence carbon assessment dataset demonstrates strong completeness, particularly in 
spatial resolution, geographic coverage, temporal scope, and definitional accuracy. With excellent 
spatial resolution, it provides highly granular data suitable for analyzing cocoa landscapes at the plot 
level. Its geographic scope is also excellent, ensuring comprehensive coverage of regions relevant to 



 

 
31 

 

monitoring the cocoa value chain globally. Additionally, the dataset has a robust temporal scope 
including over 20 years of historical data, making it well-suited for GHG assessments. The dataset 
adheres to credible classification standards, aligning with FAO forest definitions. Furthermore, 
maintenance reliability is excellent, indicating that the dataset is actively updated to support 
consistent monitoring efforts. 

However, uncertainty documentation and validation remain limited, as comprehensive independent 
validation results are not yet publicly available. That said, a peer-reviewed publication, jointly 
submitted with the European Space Agency (ESA), presents the methodology and assessment 
results and is currently under review. Until the publication is released, quantitative validation results 
cannot be shared publicly. While these results have been reviewed as part of this study, they could 
not be formally included in this report. 

Finally, historical impact is rated as good, with documented use in various applications related to 
deforestation monitoring and supply chain analysis.  

Data management 
The dataset is accessible via API, ensuring reliable data access and integration into analytical 
workflows. Additionally, it is provided with a clear data usage license, outlining the terms of use. 
However, several aspects of metadata quality and accessibility are limited or very limited, which 
affects its findability, interoperability, and long-term reusability. 

While metadata are available, they lack a globally unique identifier, are not registered in a common 
searchable database, and do not clearly link to dataset versions. Additionally, offline availability is 
very restricted, and there is no clear strategy for long-term data retention, which raises concerns 
about its future accessibility. 

FCPF Carbon Fund – Taï National Park Emission Reductions Project 

Self-reported validation 
While no validation per say was performed in this study, uncertainty was systematically documented 
and managed through a structured Quality Assurance/Quality Control (QA/QC) approach, 
addressing both systematic biases and random errors. The assessment focused on three key areas: 
activity data, emission factors, and model integration. 

For activity data, measurement uncertainty primarily stemmed from land cover classification errors 
due to variations in color, texture, and seasonal influences in satellite imagery. To mitigate this, 
interpreter training, standardized protocols, and confusion matrix analyses were employed. 
Sampling uncertainty was addressed through a stratified probabilistic sampling approach, ensuring 
a balanced representation across different land cover types. Despite this, some rare land cover 
changes exhibited high variance, which remained a source of residual uncertainty. 

In terms of emission factors, uncertainty was introduced through tree measurement errors, biomass 
estimation models, and default assumptions for wood density. While tree height and diameter 
measurements were subject to field verification and standardized protocols, biomass estimation 
relied on pantropical allometric equations due to the lack of species-specific models for Côte 
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d’Ivoire. The use of default values for wood density in cases where species-specific data was 
unavailable introduced potential bias, despite cross-validation efforts. 

Model integration uncertainty was managed by harmonizing activity data with emission factors to 
ensure consistency in carbon flux estimates. Error control mechanisms were embedded in emission 
and removal calculations to prevent double-counting and ensure methodological coherence. 
However, uncertainties persisted in the classification of agroforestry systems, the accuracy of land 
use change detection, and the representation of rare land cover transitions. 

Discussion 
The statistical approach used in the FCPF Carbon Fund project employs a systematic 1km x 1km 
sampling grid, enabling consistent and reliable long-term monitoring of land cover changes. This 
design ensures a robust methodology with a relative sampling error of less than 15%, making it 
suitable for high-accuracy assessments over time. 

While effective in maintaining consistency, the approach is limited in its temporal and spatial 
flexibility. Each new time period requires reanalyzing approximately 4,000 high-resolution imagery 
sites, which can be resource intensive. Additionally, the method is valid only for the specific area 
where it was originally implemented, restricting its adaptability to new regions without significant 
investment. 

To apply this approach for assessing a specific value chain, a customized sampling design would be 
necessary. Such customization would need to account for the unique geographical and operational 
characteristics of the value chain, ensuring the sampling aligns with its scope and objectives. 

Furthermore, achieving higher levels of precision requires a significant increase in the number of 
samples, with sample size growing exponentially as desired accuracy improves. This presents a 
practical challenge, particularly for large-scale assessments. 

Overall, the statistical approach provides a consistent and reliable framework for long-term 
monitoring, but its limitations in flexibility, resource demands, and scalability are to be considered 
carefully when applying it to specific contexts, such as value chain assessments. 

Tree Planting  
Agroforestry systems, particularly those involving cacao cultivation, and reforestation efforts pose 
unique challenges for remote sensing due to their diverse and complex nature. These systems often 
consist of a mix of tree species, crops, and other vegetation, making accurate classification difficult. 
Lower spatial resolution imagery frequently struggles to capture the small-scale practices or 
distinguish individual trees within agroforestry and reforestation interventions. Additionally, optical 
remote sensing methods often lack the capacity to provide detailed information about the vertical 
structure of vegetation, a critical factor in assessing both agroforestry systems and reforestation 
interventions. 

The assessment of agroforestry systems and reforestation interventions also necessitates the ability 
to monitor individual growing trees, which can take several years to mature. Identifying these trees in 
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the first two years after planting is particularly challenging with lower spatial resolution imagery. This 
requires a long series of high-resolution imagery, which can be both costly and complex to analyze. 
However, recent advancements have introduced datasets capable of providing tree canopy height 
for specific years or offering very high-resolution imagery. These datasets aim to map the maximum 
tree height within each 10m pixel, specifically capturing the height of the 98th percentile tree rather 
than the average height within the pixel. If updated frequently, these datasets hold significant 
potential for enabling effective monitoring of agroforestry and reforestation efforts, bridging current 
gaps in data availability and analysis capabilities. 

Selected datasets 

ETH Global Sentinel-2 10m Canopy Height (2020) 
The ETH-GTCH dataset (Lang et al., 2023)provides a global, high-resolution (10m) canopy height map 
for the year 2020. This dataset addresses the critical need for detailed vegetation height data, which 
is essential for understanding the global carbon cycle, ecosystem health, and biodiversity 
conservation. By combining GEDI LiDAR data with dense Sentinel-2 satellite imagery through a 
probabilistic deep learning model, it delivers accurate and reliable estimates of canopy height. 
Furthermore, the model incorporates uncertainty management, enhancing its credibility and utility 
for various environmental monitoring applications. 

WRI & Meta Global 1m Tree Canopy Height Map 
The WRI/Meta-GTCH dataset (Tolan et al., 2024) represents a groundbreaking advancement in tree 
monitoring, offering the first-ever global canopy height map at an unprecedented 1-meter resolution. 
This dataset enables the detection and measurement of individual trees worldwide, providing 
unparalleled detail. Powered by Meta’s DiNOv2 Self-Supervised Learning (SSL) model, the dataset is 
built from 18 million high-resolution satellite images (0.5m Maxar imagery), collected between 2009 
and 2020, with 80% of the data sourced from the period between 2018 and 2020. The model achieves 
a mean absolute error of 2.8 meters in canopy height prediction, making it a highly accurate resource 
for applications such as forest management, agroforestry monitoring, and biodiversity conservation. 

Method Overview 
A quantitative assessment of the datasets for tree planting monitoring was not conducted in this 
study, as such an evaluation would require extensive and resource-intensive fieldwork beyond the 
scope of this analysis. Instead, the methodology focused on a comprehensive review of scientific 
publications associated with these datasets. 

To evaluate the usability of each dataset for tree planting and agroforestry monitoring, we conducted 
a structured assessment of their strengths and weaknesses. This evaluation was based on a 
systematic review of scientific literature, focusing on three key aspects. First, we examined validation 
quality, assessing whether the dataset was validated using appropriate methods and if the results 
demonstrated robust accuracy in detecting tree height and changes over time. Second, we examined 
temporal consistency, assessing whether the dataset provided reliable and frequent updates for 
long-term monitoring of tree planting activities. Third, we analyzed spatial resolution and the ability 
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to identify single trees, determining whether the dataset could accurately capture small-scale 
planting efforts within agroforestry landscapes. Lastly, we reviewed limitations in detecting subtle 
differences in low canopy heights, which are critical for distinguishing young plantations and 
assessing early-stage tree growth. By evaluating these criteria, the analysis provided insights into the 
datasets’ suitability for tree planting and agroforestry monitoring, while highlighting specific areas 
where improvements are needed to enhance their utility in complex agroforestry landscapes.  

Overall Assessment 
The overall assessment of tree height datasets, as presented in Table 5, revealed notable differences 
in their performance across key criteria. The ETH-GTCH scored highest with a final score of 73%, 
driven by its strong performance in usability, completeness (58%), and data management (100%), 
reflecting robust documentation and accessibility practices. In comparison, the WRI/Meta-GTCH  
achieved a final score of 50%, performing similarly in usability (66%) but lower in completeness 
(44%) and data management (24%), indicating gaps in coverage and metadata practices.  

Table 5 Overall assessment scores for tree height datasets 
 

Usability Completeness Data Management Final Score 

WRI/Meta-GTCH Limited 44% 24% 50% 

ETH-GTCH Limited 58% 100% 73% 

 

 

ETH Global Sentinel-2 10m Canopy Height (2020) 

Self-reported Validation 
The ETH-GTCH was validated using multiple independent reference datasets and comparison with 
existing global-scale canopy height estimates. 

Comparison with the University of Maryland Canopy Height Map 

The ETH-GTCH dataset was compared against the University of Maryland (UMD) Global Canopy 
Height Map, which combines GEDI data (RH95) with Landsat composites. This comparison showed 
that the ETH map significantly reduced underestimation bias from −7.1m to −1.7m when validated 
against GEDI hold-out data (87 million footprints). While the UMD dataset consistently 
underestimated canopy height, especially for trees taller than 30m, the ETH dataset outperformed 
UMD across all height ranges, albeit with a tendency to overestimate vegetation heights below 5m 
and a moderate overestimation bias (≈2m) for trees between 5–20m. 

Validation with Independent Airborne LiDAR Data 

The ETH-GTCH dataset was further validated against independent airborne LiDAR datasets, 
including: 
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• NASA’s Land, Vegetation, and Ice Sensor (LVIS) campaigns 
• High-resolution canopy height models from small-footprint airborne laser scanning (ALS) 

campaigns in Europe 

In nine out of twelve regions, the ETH dataset demonstrated lower random error (RMSE and MAE) and 
bias compared to the UMD dataset. While UMD systematically underestimated canopy height across 
all regions, ETH tended to overestimate tree height in most cases, particularly in high-canopy regions 
such as Oregon (USA) and Gabon, where UMD had an overall bias ranging between -19% to -23%, 
while ETH had a bias of -4% to -13% and 7% to 10% respectively. 

Discussion 
Usability 
The ETH-GTCH dataset, utilizing Sentinel-2’s 10m resolution, provides a consistent and scalable 
approach for mapping canopy height globally within a single year. 

One of the strengths of this dataset is its enhanced accuracy in estimating tall canopies (>30m), 
which are key indicators of high carbon stocks. These taller canopy measurements are particularly 
important for studies focused on climate change and biodiversity, where accurate representation of 
mature forests can guide decision-making and policy formulation. 

A significant limitation is the dataset’s tendency to overestimate areas with very low canopy heights 
(<5m). This overestimation can lead to errors in land cover classifications, particularly in ecosystems 
with low vegetation such as grasslands or sparse forests and cocoa agroforestry. These inaccuracies 
may impact the ability to discern between forested areas and other land types, which is crucial for 
accurate land use, agroforestry, and reforestation monitoring.  

The overestimation of low canopy heights is especially problematic in agroforestry landscapes, 
where trees can be sparse and are interspersed with crops. This issue might lead to misclassification 
of agroforestry areas and hinder the monitoring of newly planted systems. While the dataset is 
updated annually, its limitations in detecting low canopies, combined with its 10m spatial resolution, 
make it unsuitable for accurately identifying trees less than two years of age. Enhancing the dataset’s 
sensitivity to these landscapes would be essential for improving its applicability to agroforestry 
monitoring. 

Completeness 
The ETH-GTCH dataset offers strong capabilities in temporal resolution, geographic coverage, 
validation, and methodological transparency, making it a valuable resource for monitoring tree 
height dynamics over time. The dataset provides excellent temporal resolution, allowing for frequent 
updates that support the monitoring of cocoa-driven deforestation. It also has global coverage, 
making it relevant for assessing cocoa landscapes at a broad scale. Its reliability is further reinforced 
by rigorous validation protocols and a peer-reviewed publication, ensuring transparency and 
credibility. 

However, the dataset does have some limitations. While the spatial resolution is good, it is less 
granular than some other datasets, which limits precision at the plot level for cocoa landscapes. The 
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maintenance reliability is poorly documented, meaning it might not be actively updated or improved, 
which raises concerns about its long-term sustainability as a monitoring tool.  

Data management 
The ETH-GTCH dataset is hosted on a platform that allows access through an API, enabling seamless 
integration into analytical workflows. Additionally, it supports data downloads for offline analysis, 
allowing users to work with the dataset in various environments. The dataset is made available under 
a Creative Commons Attribution 4.0 International License, ensuring open access and ease of use. 
Furthermore, its metadata is published on Google Earth Engine, a widely recognized data platform 
that enhances discoverability. 

A key strength of this dataset is its detailed and well-documented metadata, which provides clear 
and comprehensive information on its methodology, structure, and limitations. This level of 
transparency improves usability and facilitates informed decision-making when applying the dataset 
to research and monitoring efforts. 

 

WRI & Meta Global 1m Tree Canopy Height Map 

Reported Validation 
The WRI/Meta-GTCH was validated through multiple quantitative and qualitative assessments, using 
airborne LiDAR, GEDI satellite measurements, human-annotated tree detection labels, and 
comparisons with existing canopy height datasets. 

 Comparison with Airborne LiDAR Data 

The dataset was evaluated against high-resolution aerial LiDAR-derived canopy height models 
(CHMs) across different test regions, including California (USA) and São Paulo (Brazil). Accuracy 
metrics included Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and bias (Mean Error 
- ME). The MAE ranged from 2.6m to 5.2m, with lower errors in regions with shorter vegetation. RMSE 
values were slightly higher, ranging from 4.4m to 7.5m, reflecting increased uncertainty in taller 
canopies. 

Comparison with Existing Canopy Height Maps 

The dataset was compared to previous global canopy height maps, specifically Lang et al. (2022) and 
Potapov et al. (2021). Visual and statistical comparisons showed that the WRI & Meta dataset 
provided higher resolution and more detailed canopy height information, particularly for detecting 
individual trees in sparse and fragmented landscapes. 

Validation with GEDI Satellite Data 

To assess global consistency, the dataset was validated against GEDI RH95 metrics, which measure 
the 95th percentile of canopy heights globally. A sample of 20,000 GEDI test points was used, 
weighted to ensure a proportional representation across different canopy height distributions. The 
correlation coefficient (R²) between the WRI & Meta dataset and GEDI RH95 varied from 0.22 (Central 
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Asia) to 0.73 (North America), with an overall global R² of 0.61.  A small negative bias was observed, 
but applying a GEDI calibration model improved the accuracy and reduced bias. 

Human-Annotated Tree Detection Validation 

In addition to canopy height accuracy, the model’s ability to segment tree vs. non-tree pixels was 
evaluated using a dataset of human-annotated Maxar imagery. Annotators labeled trees over 1m in 
height with a canopy diameter greater than 3m. The model achieved a user’s accuracy (precision) of 
82–90% and a producer’s accuracy (recall) of 86–88%, demonstrating strong agreement with human-
labeled data. The Intersection Over Union (IOU) score ranged from 0.74 to 0.77, reflecting good 
segmentation accuracy. 

Geographic Generalization and Segmentation Metrics 

The model's generalizability was tested across multiple geographic regions, showing consistent 
segmentation accuracy even in areas where training data was limited. Additional segmentation 
metrics, including Edge Error (EE), measured the sharpness of tree cover boundaries, with an EE 
score of 0.49–0.52, indicating good boundary definition. The self-supervised learning approach used 
in training enabled the model to perform well across diverse landscapes. 

Discussion 
Usability 
The WRI/Meta-GTCH dataset demonstrates excellent performance in both dense and sparse tree 
areas. With its 1-meter resolution, it accurately detects individual trees and significantly outperforms 
the ETH Global Canopy Height dataset in regions with low tree and open canopies. This level of detail 
makes it highly valuable for monitoring isolated trees and small clusters, which are often critical 
components of agroforestry systems and fragmented landscapes.  

However, the dataset is limited by its inconsistent temporal coverage. Built from high-resolution 
imagery collected between 2009 and 2020 with 80% of the data from the period between 2018 and 
2020. Despite this concentration, global coverage remains inconsistent, and users cannot rely on the 
availability of year-specific data for all locations. This irregular temporal coverage poses significant 
challenges for agroforestry and reforestation monitoring, as up-to-date imagery for specific sites or 
years may not be available, hindering efforts to track changes or monitor tree growth over time. 

Furthermore, the dataset necessitates careful verification of imagery acquisition dates. Analyses 
using this dataset must account for the exact timing of the imagery to ensure accurate and 
contextually relevant assessments. Without precise date verification, the risk of temporal 
mismatches could undermine the reliability of results, particularly in dynamic or rapidly changing 
environments. This temporal limitation also makes the dataset unsuitable for identifying trees less 
than two years of age, as detecting recently planted trees requires more frequent updates than the 
dataset currently provides.  Despite these limitations, the WRI & Meta Global Tree Canopy Height 
Map remains a powerful tool for applications requiring fine-scale tree height data, particularly in 
sparse tree landscapes.  
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Completeness 
The dataset's spatial resolution is excellent, offering a high level of granularity that allows for precise 
analysis of cocoa landscapes at the plot level. Additionally, it provides comprehensive global 
coverage, making it a valuable resource for monitoring the cocoa value chain across different 
regions. The dataset also benefits from rigorous validation protocols, ensuring reliability, and its 
methodology has been published in a credible peer-reviewed journal, further enhancing 
transparency and credibility. 

However, the dataset is very limited in temporal resolution and scope, meaning it is not updated 
frequently enough to support real-time deforestation monitoring and lacks the long-term historical 
data necessary for GHG assessments. Additionally, its maintenance reliability is poorly documented, 
raising concerns about its long-term usability as a sustainable monitoring tool. In terms of historical 
impact, while the dataset has been used in research, there are only limited credible reports of its 
direct application in shaping policies or driving large-scale interventions. 

Data management 
The WRI/Meta-GTCH dataset has notable strengths in data accessibility and management, but also 
key limitations in metadata quality. It is hosted on a platform that enables access via API, facilitating 
seamless integration into various analytical workflows. Additionally, it allows data downloads and 
offline analysis, making it a versatile resource for different use cases. The dataset is also provided 
under a Creative Commons Attribution 4.0 International License, ensuring open access and ease of 
use. Furthermore, its metadata is published on Google Earth Engine, a well-known data platform, 
which enhances visibility and discoverability. 

However, the main limitation in terms of data management is the quality of the metadata itself. At the 
time of this report, the metadata lacks critical information about several key elements of the dataset, 
reducing transparency and making it more challenging for users to fully assess its applicability. 
Improving the completeness and clarity of the metadata would significantly enhance the dataset’s 
usability and reliability for broader monitoring applications. 

Platforms 

Selected platforms 

Satelligence 
Satelligence is a commercial platform that specializes in providing high-accuracy land cover maps 
tailored for deforestation-free compliance and Scope-3 reporting. With its robust remote sensing 
capabilities, Satelligence supports organizations in monitoring deforestation and land-use change 
and ensuring sustainable practices within supply chains.  

Global Forest Watch (GFW) 
Global Forest Watch (GFW) stands as the most comprehensive public platform for forest monitoring. 
It provides extensive documentation and exceptional data accessibility, making it a critical resource 
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for researchers, policymakers, and organizations aiming to track and manage forest changes 
globally. By offering open-access tools and datasets, GFW promotes transparency and empowers 
stakeholders to engage in evidence-based decision-making for forest conservation. 

Mighty Earth 
Mighty Earth focuses on mapping the cocoa sourcing locations of major chocolate companies in 
Côte d’Ivoire and Ghana. Its platform is focused on linking cocoa production to sourcing companies, 
with the intent to enable stakeholders to address deforestation within the cocoa supply chain.  

Trase 
Trase provides the most complete cocoa supply chain data for Ghana and Côte d’Ivoire, offering 
unparalleled insights into the movement of cocoa from production to export. This platform plays a 
key role in enhancing supply chain transparency and accountability by connecting production 
regions with buyers and markets. Trase’s data-driven approach has been developed to help 
stakeholders identify and mitigate sustainability risks across the cocoa supply chain. 

Method Overview 
The assessment of the platforms was conducted using a combination of methods. It primarily 
involved a detailed review of the documentation provided by each platform, complemented by 
interviews with key platform managers and technical staff, specifically for Satelligence and Global 
Forest Watch (GFW). Additionally, the evaluation included an analysis of the methodologies used to 
combine known datasets, the datasets used, the quality and detail of the platform’s documentation, 
and its overall accessibility to users. While the accuracy of the platforms themselves was not directly 
measured, their usability was carefully assessed by examining the quality and reliability of the 
underlying datasets. Particular attention was given to whether the analysis relied solely on global 
datasets without incorporating locally tailored information, as such an approach may limit the 
relevance of the results in complex landscapes like those in Côte d’Ivoire and Ghana. The 
assessment also considered whether the platforms depended on a single dataset rather than 
employing a more robust convergence of evidence approach, which has been shown to yield more 
accurate and balanced land cover classifications. Furthermore, we examined whether the platforms 
used datasets that performed poorly in our accuracy assessment, as reliance on lower-quality inputs 
could significantly impact the credibility of the platform’s outputs. By focusing on these aspects, the 
evaluation provided a comprehensive understanding of each platform’s strengths, limitations, and 
overall suitability for land cover and supply chain monitoring. 

Overall Assessment 
The overall assessment of the platforms, presented in Table 6, highlighted varying strengths and 
weaknesses across key criteria. Global Forest Watch scored the highest with a final score of 63%, 
driven by good performance in data management (99%) and completeness (86%), although its 
usability (limited) leaves room for improvement due to its reliance on global dataset, particularly in 
cocoa landscapes. Satelligence closely followed with a final score of 62%, with a good usability but 
scoring lower in completeness (43%). Trase achieved a final score of 56%, with balanced 
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performance in usability (good), data management (72%), and inclusiveness (33%), though its 
completeness (41%) highlights gaps in coverage. Mighty Earth, with a final score of 43%, showed 
consistent but modest scores across all categories, including usability (very limited), data 
management (71%), and inclusiveness (33%), reflecting a need for more robust data integration and 
analysis capabilities.  

Table 6 Overall assessment scores for platforms 
 

Usability Completeness Data 
Management 

Inclusiveness Final Score 

Satelligence Good 43% 69% 66% 62% 

GFW Limited 86% 99% 66% 63% 

Mighty earth Very Limited 45% 71% 33% 43% 

Trase Limited 41% 72% 33% 56% 

 

Satelligence 
The Satelligence platform delivers high-quality land cover mapping, utilizing robust methodologies 
and diverse datasets to achieve greater accuracy and completeness compared to publicly available 
datasets. Its maps are reliable for deforestation-free compliance and sustainability assessments. 
However, some limitations remain in distinguishing non-forest natural ecosystems and in 
differentiating between sparse forests and savannah areas, especially in complex landscapes like 
Ghana. Addressing these challenges could further enhance the platform. Satelligence provides a 
reliable Scope-3 reporting service, leveraging its locally tailored and accurate land cover maps to 
deliver detailed insights for carbon accounting and deforestation-free compliance. By integrating a 
wide range of satellite data sources, including Sentinel-1, Sentinel-2, Landsat, ALOS PALSAR, GEDI, 
and ICESAT, the platform offers robust aboveground biomass modeling. Occasional validation with 
airborne LiDAR and field measurements further enhances the reliability of its data. This 
comprehensive approach positions Satelligence as a valuable resource for Scope-3 reporting. While 
training materials and metadata are publicly available, some methodological documentation is 
accessible through Satelligence’s platform upon request. However, Satelligence has also published 
aspects of its methodology on its website in the form of blogs, such as its Sentinel-1 radar change 
detection method, developed in collaboration with WUR. Additionally, Satelligence presents its work 
at scientific conferences, including the Living Planet Symposium, where it shares insights on 
methodologies such as global-scale change detection algorithms for dry and deciduous forests and 
approaches for an EUDR forest baseline using open data, commodity maps, and forest change 
detection. These conference presentations are accompanied by publications that further document 
the methodologies used. Satelligence effectively integrates local data, increasing the platform’s 
relevance compared to global datasets. This integration supports more accurate and context-
specific monitoring. However, the platform lacks a formal inclusiveness strategy, which limits its 
engagement with diverse stakeholders and its ability to ensure data representativeness across all 
relevant land-use systems. Overall, the Satelligence platform provides a strong and reliable resource 
for land cover mapping and deforestation-free compliance, with clear areas for further improvement 
in transparency and stakeholder engagement. 
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Global Forest Watch 
Global Forest Watch (GFW) is recognized as the most complete publicly available platform for forest 
monitoring. It offers outstanding documentation, comprehensive error handling, and high data 
completeness, making it highly accessible and reliable for a wide range of users. The platform’s GFW 
Pro version provides advanced features for custom analysis, risk assessment, and tailored 
monitoring tools, making it particularly suitable for corporate supply chain monitoring and 
compliance tracking. 

GFW primarily utilizes global datasets such as SBTN-NL, GFC Tree Cover, EU-JRC-V2, and GFCF. 
These datasets are well-documented and hosted on reputable platforms, ensuring transparency and 
consistency in data analysis. This reliance on standardized global datasets makes GFW highly 
effective for broad-scale forest monitoring. However, its reliance on global data limits its applicability 
in more specific contexts, such as agroforestry or cocoa landscapes. 

Despite its strengths, GFW’s dependence on global datasets results in lower accuracy for monitoring 
cocoa landscapes in Côte d’Ivoire and Ghana. This highlights the need to integrate locally developed 
datasets, such as official national land cover data, to improve performance in these regions. 
Implementing the FAO WHISP Convergence of Evidence approach, which combines results from 
multiple datasets, is recommended to enhance accuracy and applicability for cocoa landscapes 
when using GFW. 

GFW is actively working to promote inclusivity by supporting projects that assist smallholder farmers 
in digitizing their cocoa plots and integrating this data into the platform. These efforts aim to enhance 
local engagement and make monitoring more inclusive, particularly in cocoa-producing regions. 
Such initiatives highlight GFW’s commitment to improving the utility of its platform for local 
stakeholders. 

Overall, Global Forest Watch is an excellent resource for forest monitoring, offering unmatched 
accessibility and comprehensive tools. However, its effectiveness in specific contexts like cocoa 
landscapes could be enhanced by incorporating local datasets and applying convergence-based 
approaches for greater accuracy and inclusivity. 

Mighty Earth 
Mighty Earth plays a significant role in enhancing data transparency by collaborating with Trase to 
georeference the sourcing locations of major chocolate companies. This includes mapping cocoa 
cooperatives and first points of purchase in Côte d’Ivoire and Ghana. By linking cocoa production to 
sourcing entities, the platform provides valuable insights for understanding supply chain dynamics 
and their environmental impact. 

The platform incorporates global datasets such as Hansen et al. (2013), which defines forests using 
a 30% tree cover density threshold (CIV – forest precision: 38% ± 9%, recall: 56% ± 13%, GH – forest 
precision: 44% ± 12%, recall: 46% ± 14%), and the first version of the JRC Forest Map (CIV – forest 
precision: 48% ± 9%, recall: 89% ± 8%, GH – forest precision: 51% ± 9%, recall: 94% ± 5%).i While 
these datasets offer broad-scale forest monitoring, their limited accuracy undermines the platform's 
ability to effectively assess deforestation risks in cocoa landscapes. Mighty Earth utilizes the Abu et 
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al. (2021) dataset for mapping cocoa farms, which has shown limitations in accuracy, with a 
precision of only 62% and a recall of 83%. This leads to overestimations of cocoa extent and its 
environmental impact, reducing the reliability of analyses conducted using this dataset. While 
Mighty Earth is effective as a visualization platform, it lacks tools for comprehensive supply chain 
analysis or compliance monitoring. Its primary function is to display analysis results rather than to 
offer actionable tools for assessing supply chain risks or ensuring deforestation-free practices. 
Although Mighty Earth’s use of combined datasets is a positive step, its reliance on low-quality 
sources limits its overall effectiveness. Incorporating a more diverse range of global and local 
datasets would enhance the platform’s relevance for forest conservation and supply chain 
accountability.  

In summary, while Mighty Earth provides valuable insights into cocoa sourcing locations and 
deforestation risks, its reliance on limited datasets and lack of robust supply chain analysis tools 
reduces its overall impact. Greater integration of accurate datasets and the development of supply 
chain monitoring capabilities would significantly enhance its utility for forest conservation and 
supply chain accountability. 

Trase 
Trase provides the most comprehensive data for understanding the cocoa supply chain flows in 
Ghana and Côte d’Ivoire. The platform offers valuable insights into supply chain dynamics and 
deforestation risks, helping stakeholders identify potential vulnerabilities and opportunities for 
improved sustainability practices. Its ability to link cocoa production areas to downstream supply 
chain actors makes it a powerful tool for analyzing risk at a macro level. 

In Côte d’Ivoire, Trase utilizes the ETH satellite-based high-resolution cocoa maps (CIV – cocoa 
precision: 90% ± 6%, recall: 80% ± 11%, GH – cocoa precision: 78% ± 8%, recall: 86% ± 13%), which 
demonstrated the highest accuracy for cocoa mapping in this assessment. This robust mapping 
methodology ensures reliable data on cocoa production areas, enhancing the platform’s relevance 
for understanding cocoa-driven deforestation and supply chain impacts. 

Despite its strengths in cocoa mapping, Trase relies on the TMF global forest extent dataset (CIV – 
forest precision: 50% ± 12%, recall: 33% ± 10%, GH – forest precision: 47% ± 13%, recall: 34% ± 13%) 
for deforestation analysis in Côte d’Ivoire, which performed poorly in this assessment. This reliance 
limits the platform’s accuracy in evaluating deforestation impacts tied to cocoa production. 

Trase’s primary focus on the entire value chain, rather than on specific farms or sites, presents 
limitations for deforestation attribution. This broad approach makes it challenging to provide the 
detailed, site-specific information required for deforestation-free compliance. As a result, the 
platform is more suitable for risk analysis than for generating precise compliance monitoring data. 

In summary, Trase is a highly effective platform for supply chain analysis and risk assessment, 
particularly in identifying trends and impacts across the cocoa value chain. However, its reliance on 
limited forest extent data and its broad focus reduces its effectiveness for site specific compliance 
monitoring. 
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Conclusion 
Global and local datasets each present distinct advantages and limitations for land cover and carbon 
monitoring. Global datasets, with their standardized methodologies, transparency, and widespread 
accessibility, enable consistent comparisons across regions. However, their performance falls short 
in complex and fragmented landscapes, such as those in Côte d’Ivoire and Ghana, where they 
struggle to capture nuanced dynamics. In contrast, local datasets, including official national maps, 
provide higher accuracy and context-specific relevance, making them more effective for monitoring 
in these regions. With the land cover map 2020, Côte d’Ivoire has made great progress toward open-
access data, offering well-documented datasets with robust validation, setting a strong example for 
public data management. Nonetheless, many local datasets still lack proper documentation, 
accessibility, and long-term support, limiting their broader applicability. Similarly, public and 
commercial tools demonstrate a comparable trade-off. Public datasets, such as Global Forest 
Carbon Fluxes, offer a comprehensive foundation for carbon flux analysis but rely on suboptimal 
baselines, like Hansen et al., which are insufficient for complex landscapes. Commercial platforms, 
such as Satelligence, overcome these challenges by delivering more accurate and tailored insights 
through advanced aboveground biomass modeling, validated with ground and LiDAR data, making 
them more reliable for Scope-3 reporting and specific use cases. 

To date, no single dataset, including commercial ones that generally demonstrate higher levels of 
accuracy, has achieved consistently high accuracy across all land cover categories. This study 
suggests that combining datasets through a convergence of evidence approach could offer a more 
balanced land cover classification by leveraging the strengths of multiple datasets.  In this study, we 
demonstrate an example of such a combination, guided by the results of a rigorous validation 
process. However, a key limitation is that the same validation data were used both to select the best-
performing datasets and to evaluate the final composite map, which may introduce bias and inflate 
accuracy estimates. Further research is needed to determine the optimal dataset combinations for 
maximizing recall or precision in specific categories and to robustly validate the results using 
independent reference data. Nevertheless, the high level of accuracy achieved in this study 
underscores the potential effectiveness of the convergence of evidence approach, as proposed by 
FAO WHISP, when paired with a robust dataset selection process. This method provides a structured 
approach to improving our understanding of the confidence level in land cover classification within 
complex landscapes by integrating multiple datasets. 

In practice, this approach can be applied to: 

• Identify land cover change using either the best available dataset or a combination of 
datasets, assessing how many datasets agree on the same change as an initial confidence 
indicator. 

• Leverage category-level confidence indicators derived from dataset agreement to better 
define baseline forest extent, reducing false positives that could lead to unnecessary field 
verification. A more accurate baseline allows for prioritizing field visits in areas that were 
more likely to have been forests, ensuring that deforestation assessments focus on the most 
relevant locations. 
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• Apply a filtering step to discard events that appear highly unlikely after a simple visual check 
of satellite imagery, improving efficiency in monitoring efforts. 

 

Agroforestry systems, particularly cocoa landscapes, present unique challenges for monitoring due 
to their inherent complexity, small-scale practices, and low canopy heights. These characteristics 
make it difficult for conventional remote sensing approaches to deliver accurate and representative 
results. Current datasets, including high-resolution imagery and tree height maps, offer promising 
advancements but require further development and integration to effectively address these 
challenges. Datasets such as the ETH Canopy Height Map and WRI & Meta Tree Canopy Height Map 
demonstrate significant potential for agroforestry monitoring, providing unprecedented detail at 
global and local scales. However, limitations like the overestimation of low canopies and 
inconsistent temporal coverage emphasize the need for improvements and careful dataset 
selection. Achieving accurate and reliable tree planting monitoring will require combining these 
emerging tools with robust methodologies tailored to the unique characteristics of agroforestry 
systems and reforestation activities. 

The platforms analyzed in this study each offer unique strengths and address different aspects of 
land cover and supply chain monitoring, but all have areas for improvement. Satelligence provides 
accurate land cover and biomass data, making it particularly strong for Scope-3 reporting and local 
data integration. However, transparency could be enhanced by improving documentation and 
metadata accessibility and developing a formal inclusiveness strategy to engage a broader range of 
stakeholders. Global Forest Watch (GFW) is a leading public platform, offering comprehensive tools 
and datasets for forest monitoring. While GFW is highly accessible and widely used, it struggles with 
accuracy in cocoa landscapes due to its reliance on global datasets. Incorporating local datasets 
and leveraging convergence methods could significantly enhance its applicability in these contexts. 
Mighty Earth plays an important role in mapping cocoa sourcing locations, providing transparency in 
linking cocoa production to sourcing companies. However, its reliance on low-quality datasets and 
the absence of robust supply chain analysis tools limits its utility for comprehensive sustainability 
assessments. Similarly, Trase is highly effective for analyzing supply chains and identifying broad 
deforestation risks, but its lack of farm-level data limits its ability to support deforestation-free 
compliance monitoring.  

In conclusion, while Global Forest Watch actively seeks to include smallholders through initiatives 
such as grants for farm digitization in producing countries, other global datasets lack a clear strategy 
for incorporating local actors into their platforms. This omission is significant, as local knowledge is 
crucial for refining the context needed to produce highly accurate maps. Furthermore, the exclusion 
of smallholders from the calibration and development of zero-deforestation compliance monitoring 
tools increases the risk of further marginalizing these populations. 

To mitigate this risk, it is essential to verify deforestation risk through field assessments rather than 
excluding farmers based solely on satellite imagery. Without proper representation in global 
datasets, smallholders may be unfairly penalized due to the low accuracy of these products in the 
regions where they operate. This highlights the critical need for greater inclusivity in the development 
and calibration of monitoring systems. 
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Additionally, datasets do not remain valid indefinitely. A structured feedback process that allows 
users to report inconsistencies (e.g., false positives) and ensures that learnings are integrated into 
future dataset updates is essential for long-term reliability and improvement. This iterative process 
would help maintain the accuracy and relevance of monitoring platforms as data evolves, ensuring 
that they continue to support effective, fair, and inclusive deforestation compliance monitoring. 

Recommendations 

For WCF and its members 

Compliance with Zero Deforestation Regulations and Certification 
Selecting a reliable baseline that accurately distinguishes between cocoa, forests, and other tree 
commodities is critical for assessing deforestation risks in the supply chain. In contrast, global 
datasets proved inadequate for differentiating between forests and cocoa and are not recommended 
unless corrected using local data, such as official national datasets. Among available options, 
Satelligence offers a robust land cover map, which, despite some limitations, demonstrated higher 
accuracy than publicly available datasets 

For any analysis reliant on publicly available datasets, we strongly advocate adopting the 
convergence of evidence approach, as proposed by FAO WHISP, when paired with a robust dataset 
selection process to address inherent limitations and biases. 

For open public platforms, Global Forest Watch (GFW) and its Pro version are recommended for 
tailored supply chain analysis. However, these platforms would greatly benefit from the integration 
of more local data to enhance the accuracy of information currently based on global datasets.  

The following recommendations are intended for companies that choose to base their analyses 
solely on publicly available open-access datasets, instead of using commercial services that may 
have higher accuracy data available, such as Satelligence. Each scenario outlines the use of remote 
sensing for compliance with zero-deforestation regulations and certification standards, providing 
guidance on selecting the most suitable datasets and methodologies to maximize accuracy and 
reliability within the limitations of public data. 

Jurisdictional Risk Assessment for EUDR Compliance 
To minimize the risk of excluding forest areas and potentially overlooking deforestation, we 
recommend prioritizing recall over precision using datasets with moderate precision (>0.7) and high 
recall (>0.8) that adhere to the FAO forest definition and data specifically developed for 2020. 
Additionally, to identify areas where cocoa is most likely to have driven deforestation, datasets 
should meet the same precision and recall thresholds (>0.7 precision, >0.8 recall) for cocoa extent 
in 2020. Deforestation data should cover the period from 2020 onward and be updated annually to 
ensure accurate and timely monitoring.  
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Table 7 Open-access public datasets recommendation for jurisdictional risk assessment for EUDR compliance 

CIV GH 

Forest: National data (p: 73 ± 10, r: 81 ± 12) 
To better assess the confidence level of forest 
extent data from national datasets, additional 
lower-quality datasets can be used to explore 
their level of agreement, such as EU-JRC-V2 
(p: 64 ± 12, r: 80 ± 12) and SBTN-NL (p: 57 ± 
11, r: 81 ± 11). 
Cocoa: ETH-Cocoa (p: 91 ± 7, r: 80 ± 12) 
Deforestation: GFC 

Forest: No dataset meets the required precision. Agreement 
among EU-JRC-V2 (p: 63 ± 11, r: 88 ± 7), national data (p: 63 ± 
13, r: 63 ± 13), and SBTN-NL (p: 66 ± 11, r: 87 ± 8) should be 
used to assess confidence in forest classification.  
Cocoa: ETH-Cocoa (p: 78 ± 8, r: 87 ± 13).  
Deforestation: GFC. 

 

Farm-Level Monitoring for EUDR Compliance 
To reduce the need for extensive field verification of farm-level deforestation and minimize the risk of 
excluding forest areas, which could result in missed deforestation events, we recommend using 
datasets with both high precision (>0.8) and high recall (>0.8) for forest identification, following the 
FAO forest definition and utilizing data specifically developed for 2020. Deforestation data should 
cover the period from 2020 onward and be updated annually to ensure accurate and timely 
monitoring.  

Table 8 Open-access public datasets recommendation for farm-level monitoring for EUDR compliance 

CIV GH 

Forest: National data (p: 73 ± 10, r: 81 ± 12). A 
trade-off on precision reduces the risk of 
missing deforestation but increases the need 
for field validation. To better assess the 
confidence level of forest extent data from 
national datasets, additional lower-quality 
datasets can be used to explore their level of 
agreement, such as EU-JRC-V2 (p: 64 ± 12, r: 
80 ± 12) and SBTN-NL (p: 57 ± 11, r: 81 ± 11). 
Deforestation: GFC, TMF 

Forest: No dataset meets the required precision. Agreement 
among EU-JRC-V2 (p: 63 ± 11, r: 88 ± 7), national data (p: 63 ± 
13, r: 63 ± 13), and SBTN-NL (p: 66 ± 11, r: 87 ± 8) should be 
used to assess confidence in forest classification.  
Deforestation: GFC. 

 

No farm should be excluded from a supply chain solely based on remote sensing data. Any 
suspected deforestation must be verified through on-the-ground field validation to ensure accuracy 
and fairness in decision-making. 

Jurisdictional Pre-2020 Deforestation Risk Assessment 
To minimize the risk of excluding forest areas and potentially overlooking deforestation, we 
recommend using datasets with moderate precision (>0.7) and high recall (>0.8) to identify forest 
extent at the cut-off year. Additionally, to identify areas where cocoa is most likely to have driven 
deforestation, datasets should meet the same precision and recall thresholds (>0.7 precision, >0.8 
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recall) for cocoa extent at the cut-off year. Deforestation data should cover the period from the cut-
off year onward and be updated annually to ensure accurate and timely monitoring. The following 
recommendations are intended for companies that choose to base their analyses exclusively on 
publicly available, open-access datasets. While commercial providers offer services specifically 
tailored to these tasks, the accuracy of those services, particularly for pre-2020 baseline 
assessments, was not evaluated in this study. 

In both Ghana and Côte d’Ivoire, no publicly available, open-access, high-quality forest extent data 
is available for pre-2020 dates. Therefore, we recommend dividing the analysis into two distinct 
periods: one set of datasets should be used to assess changes prior to 2020, while a different 
selection should be applied from 2020 onward to ensure consistency and accuracy in forest 
monitoring.  

Forest (Pre-2020): In both countries, the recommended approach is to combine multiple publicly 
available datasets, identifying areas where datasets intersect to improve confidence. Relevant 
datasets include DW (2015–2025), GFC (2000–2023), GLAD-Forest (2000–2022), GLC-FCS30D 
(1985–2022), and TMF (1990–2023). For specific cases, such as Rainforest Alliance (2014 cut-off), 
tailored proprietary datasets developed by the certifier should be preferred when independent 
validation confirms the reliability and quality of the data. Forest (2020 onward): Same 
recommendation as for EUDR. Cocoa: No cocoa maps exist before 2020. If the cut-off year is close 
to 2020 (up to 2015), ETH-Cocoa (p: 91 ± 7, r: 80 ± 12) could be used as a proxy. Deforestation: GFC. 

Pre-2020 Zero-Deforestation Compliance Monitoring 
To reduce the need for extensive field verification of farm-level deforestation and minimize the risk of 
excluding forest areas, which could lead to missed deforestation events, we recommend using 
datasets with both high precision (>0.8) and high recall (>0.8) for forest identification, following the 
FAO forest definition and utilizing data aligned with the certification's pre-2020 cutoff date. Since no 
single publicly available, open-access, high-quality dataset exists for forest extent before 2020, the 
best approach is to combine multiple publicly available datasets to improve confidence. 
Deforestation data should cover the period up to the cutoff date. The following recommendations are 
intended for companies that choose to base their analyses exclusively on publicly available, open-
access datasets. While commercial providers offer services specifically tailored to these tasks, the 
accuracy of those services, particularly for pre-2020 baseline assessments, was not evaluated in this 
study. 

Forest (Pre-2020): In both countries, the recommended approach is to combine multiple publicly 
available datasets, identifying areas where datasets intersect to improve confidence. Relevant 
datasets include DW (2015–2025), GFC (2000–2023), GLAD-Forest (2000–2022), GLC-FCS30D 
(1985–2022), and TMF (1990–2023). For specific cases, such as Rainforest Alliance (2014 cut-off), 
tailored proprietary datasets developed by the certifier should be preferred when independent 
validation confirms the reliability and quality of the data. Forest (2020 onward): Same 
recommendation as for EUDR. Deforestation: GFC, TMF. 

No farm should be excluded from a supply chain solely based on remote sensing data. Any 
suspected deforestation must be verified through on-the-ground field validation to ensure accuracy 
and fairness in decision-making. 
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Carbon Analysis and Scope-3 Reporting 
The Global Forest Carbon Fluxes dataset is a strong publicly available option for carbon analysis and 
Scope-3 reporting. However, it relies heavily on Hansen et al. as its forest cover and loss baseline, 
which has proven suboptimal in complex and fragmented landscapes such as cocoa-growing 
regions in Côte d’Ivoire and Ghana. Users should exercise caution when utilizing this dataset in these 
contexts, as it may not fully capture the complex dynamics of these landscapes. Specifically, given 
the high recall and very low precision identified for GFC in this study, using these datasets is likely to 
result in a significant overestimation of emissions. For recent years, field verification can help 
estimate the extent of this overestimation. For older deforestation events, the use of high-resolution 
imagery, when available, can support the quantification of this overestimation. On the other hand, 
TMF, which also offers a long time-series of forest loss and degradation, shows higher precision but 
lower recall. As a result, it is likely to underestimate carbon emissions, since significant areas of 
forest, and associated loss, may not be captured in the analysis. 

To be suitable for Scope-3 reporting, datasets must provide a consistent time series of at least 20 
years, yet establishing a reliable forest baseline remains a significant challenge due to limited high-
resolution historical imagery. While publicly available datasets such as Hansen et al. (2013), TMF, 
and GLAD offer long-term deforestation tracking, their limitations in Côte d’Ivoire and Ghana must 
be carefully considered. A convergence of evidence approach, combining multiple datasets and 
thoroughly assessing uncertainties, may improve accuracy. However, further research is needed to 
validate this method for robust long-term deforestation monitoring.  

For more tailored assessments, commercial solutions like those offered by Satelligence, which 
incorporate locally gathered data and advanced modeling techniques, present a robust alternative.  

The following recommendations outline the use of remote sensing for both emission and removal 
assessment. 

Deforestation-Related Carbon Emission Assessment 
The GFCF dataset is the only public resource for carbon flux analysis. However, its reliance on 
(Hansen et al., 2013)data makes it less reliable in complex cocoa landscapes like Côte d’Ivoire and 
Ghana. More information about the use of remote sensing data for this intended use can be found in 
the GHG accounting manual for cocoa developed by Quantis and WCF (Rizzo et al., 2025). 

Carbon Removal Assessment in Cocoa Agroforestry Systems 
No public datasets meet the required granularity and local calibration needed for accurate carbon 
removal assessment. More information about the use of remote sensing data for this intended use, 
based on drone imagery or LiDAR, can be found in the GHG accounting manual for cocoa developed 
by Quantis and WCF (Rizzo et al., 2025). 

Tree Planting Monitoring 
Datasets such as the ETH Canopy Height Map and WRI & Meta Tree Canopy Height Map exhibit 
considerable potential for tree planting monitoring, offering unprecedented levels of detail at both 
global and local scales. These datasets provide valuable insights into canopy height and vegetation 
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structure, which are critical for understanding agroforestry systems and reforestation projects. 
However, their limitations, such as the overestimation of low canopies and inconsistent temporal 
coverage, highlight the need for further development and careful dataset selection to ensure 
reliability and accuracy in monitoring. 

We strongly recommend investing in additional research to address these challenges and enhance 
the capabilities of existing datasets. Moreover, the development of solutions specifically tailored to 
tree planting monitoring, with a focus on addressing the complexity and diversity of such systems, 
will be essential for advancing sustainable land-use practices, delivery of effective GHG removal 
projects, and supporting compliance with environmental and sustainability goals. 

The following recommendations outline the use of remote sensing for both recently planted 
agroforestry systems and mature ones. 

Monitoring Tree Planting and Agroforestry Establishment (New and Growing 
Systems) 
Monitoring tree planting and agroforestry establishment in new and growing systems requires very 
high-resolution data to accurately track planted tree status and detect tree mortality. Currently, only 
drone imagery and field visits provide the granularity and local calibration needed to assess early-
stage tree growth with sufficient precision. Publicly available datasets lack the necessary resolution 
and calibration, making them unsuitable for monitoring agroforestry interventions. To ensure 
effective tracking, data should be updated annually, integrating on-the-ground verification. 

Monitoring Plot-Level Agroforestry and Tree Cover Stability (Mature Systems) 
Monitoring plot-level agroforestry and tree cover stability in mature systems requires high-resolution 
tree canopy height data to effectively differentiate between cocoa and shade trees, with updates on 
an annual basis. While ETH-GTCH and UMD-GFCH offer sufficient temporal coverage, their coarse 
resolution and lack of precision for small canopies limit their reliability in agroforestry contexts. In 
contrast, WRI/Meta-GTCH provides the necessary spatial resolution, but its irregular temporal 
coverage makes it unreliable for consistently tracking tree cover changes across different sites and 
years. To ensure accurate and continuous monitoring, data sources must offer both high spatial 
precision and regular updates, which are currently not fully met by publicly available datasets. 

For Platforms 

Satelligence 
Enhance Transparency: Publish documentation and metadata in recognized public repositories, 
such as Dataverse, to improve transparency and ensure long-term availability for a wide range of 
stakeholders. This will make the platform’s methodologies and data more accessible, fostering trust 
and collaboration. 

Inclusiveness Strategy: Develop a structured inclusiveness strategy to engage a broader range of 
stakeholders, particularly smallholders and local communities. While efforts are already being 
made, such as collaborations with Fairtrade, where Satelligence’s data is used to verify smallholder 
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farms, and those farms, in turn, contribute to improving commodity maps and baseline accuracy, a 
more systematic approach would help ensure that inclusivity is consistently applied across all 
aspects of data collection and analysis. Additionally, better communication of these existing efforts 
would increase transparency and demonstrate the platform’s commitment to inclusive and 
representative data practices, ultimately enhancing the accuracy and acceptance of its outputs. 

Global Forest Watch 
Integrate High Quality Datasets: While Global Forest Watch (GFW) is highly accessible and widely 
used, its reliance on global datasets limits its accuracy in complex landscapes such as cocoa-
growing regions. Incorporating local or proprietary datasets of proven great quality through 
independent validation, including official national land cover data, would significantly improve its 
precision and relevance in these contexts. 

Mighty Earth 
Enhance Dataset Integration: Integrate additional global and local datasets, including those 
aligned with the FAO WHISP Convergence of Evidence approach, to improve accuracy and 
applicability for cocoa-producing regions. Incorporating locally developed datasets, such as official 
national land cover data, would further enhance the platform's relevance and precision. 

Adopt Robust Cocoa Map: Utilize more robust datasets, such as the ETH cocoa dataset, or 
incorporate official national cocoa data to achieve more accurate and reliable assessments of cocoa 
production areas. This will help address current limitations in mapping cocoa extents and their 
environmental impacts. 

Trase 
Enhance Deforestation Assessments: To improve the accuracy of deforestation assessments, 
Trase should incorporate multiple forest extent datasets, particularly those aligned with the FAO 
WHISP Convergence of Evidence approach. This methodology would allow Trase to leverage the 
strengths of various datasets, reducing biases and improving reliability. 

Integrate Local Data: Include locally developed datasets, such as official national forest cover data, 
to provide more accurate and region-specific insights. This would enhance the platform’s relevance 
and applicability in complex landscapes like cocoa-growing regions in Côte d’Ivoire and Ghana. 

For Countries 
Follow Côte d’Ivoire’s Example: Countries should take inspiration from the 2020 land cover map of 
Côte d’Ivoire, which sets a benchmark for thorough documentation, robust validation, and 
publication in global repositories. This approach ensures transparency, reliability, and accessibility 
for a wide range of stakeholders, making it a model for improving national land cover datasets. 

Improve Documentation and Accessibility: Many countries still require significant improvements 
in documentation, data management, metadata, and accessibility. To address these shortcomings, 
partnerships with established platforms such as Global Forest Watch (GFW) are recommended to 
enhance data distribution and ensure proper documentation practices. By improving accessibility 
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and adopting best practices in data management, locally tailored datasets could become more 
integrated and sustainable, supporting more effective land-use monitoring and compliance efforts. 

Develop High-Quality Historical Data: While some official national historical land cover datasets 
exist, they often lack the consistency and robustness of newer datasets, limiting their reliability for 
long-term analysis. Countries are strongly encouraged to invest in the development of high-quality 
historical datasets using consistent methodologies to ensure comparability over time. These efforts 
would significantly enhance long-term carbon assessments and strengthen national monitoring 
systems, ensuring that datasets remain reliable, actionable, and aligned with international 
standards. 
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Annexes 

Annex 1 
Annex 1 provides an overview of the selected datasets, including links to their data repositories and 
references to the corresponding scientific publications. 

Land cover datasets 
Title Abbreviation Source Reference 

Satelligence  Satelligence Closed dataset 
https://satelligence.com/  

(Satelligence, 2024) 

Carte Occupation du Sol 
Ivoirien 2020 

Official-CIV https://africageoportal.ma
ps.arcgis.com/home/item.
html?id=46348aa12a3d46
e592584737de64f72a  

(BNETD, 2024) 

Tthe national land use map 
for Ghana 

Official-GH https://ghana-national-
landuse.knust.ourecosyste
m.com/interface/  

(FC, 2020) 

Cocoa Probability model 
2024a and Forest 
Persistence v0 

FDaP https://developers.google.c
om/earth-
engine/datasets/publisher/
forestdatapartnership  

(Forest Data Partnership, 
2024) 

SBTN Natural Lands Map 
2020 v1.1 

SBTN-NL https://developers.google.c
om/earth-
engine/datasets/catalog/W
RI_SBTN_naturalLands_v1#
description  

(Mazur et al., 2025) 

Dynamic World V1 DW https://developers.google.c
om/earth-
engine/datasets/catalog/G
OOGLE_DYNAMICWORLD
_V1 

(Brown et al., 2022) 

Global forest cover 2020 V1 JRC-EU-V1 https://developers.google.c
om/earth-
engine/datasets/catalog/JR
C_GFC2020_subtypes_V0  

(Bourgoin et al., 2024) 

Global forest cover 2020 V2  JRC-EU-V2 https://forobs.jrc.ec.europ
a.eu/GFC  

(Bourgoin et al., 2024) 

Tropical Moist Forests 
product – Annual Change v1 
2020  

TMF https://forobs.jrc.ec.europ
a.eu/TMF  

(Vancutsem et al., 2021) 

https://africageoportal.maps.arcgis.com/home/item.html?id=46348aa12a3d46e592584737de64f72a
https://africageoportal.maps.arcgis.com/home/item.html?id=46348aa12a3d46e592584737de64f72a
https://africageoportal.maps.arcgis.com/home/item.html?id=46348aa12a3d46e592584737de64f72a
https://africageoportal.maps.arcgis.com/home/item.html?id=46348aa12a3d46e592584737de64f72a
https://ghana-national-landuse.knust.ourecosystem.com/interface/
https://ghana-national-landuse.knust.ourecosystem.com/interface/
https://ghana-national-landuse.knust.ourecosystem.com/interface/
https://developers.google.com/earth-engine/datasets/publisher/forestdatapartnership
https://developers.google.com/earth-engine/datasets/publisher/forestdatapartnership
https://developers.google.com/earth-engine/datasets/publisher/forestdatapartnership
https://developers.google.com/earth-engine/datasets/publisher/forestdatapartnership
https://developers.google.com/earth-engine/datasets/catalog/WRI_SBTN_naturalLands_v1#description
https://developers.google.com/earth-engine/datasets/catalog/WRI_SBTN_naturalLands_v1#description
https://developers.google.com/earth-engine/datasets/catalog/WRI_SBTN_naturalLands_v1#description
https://developers.google.com/earth-engine/datasets/catalog/WRI_SBTN_naturalLands_v1#description
https://developers.google.com/earth-engine/datasets/catalog/WRI_SBTN_naturalLands_v1#description
https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
https://developers.google.com/earth-engine/datasets/catalog/JRC_GFC2020_subtypes_V0
https://developers.google.com/earth-engine/datasets/catalog/JRC_GFC2020_subtypes_V0
https://developers.google.com/earth-engine/datasets/catalog/JRC_GFC2020_subtypes_V0
https://developers.google.com/earth-engine/datasets/catalog/JRC_GFC2020_subtypes_V0
https://forobs.jrc.ec.europa.eu/GFC
https://forobs.jrc.ec.europa.eu/GFC
https://forobs.jrc.ec.europa.eu/TMF
https://forobs.jrc.ec.europa.eu/TMF


 

 
55 

 

ESA World Cover ESA-WOC https://esa-
worldcover.org/en/data-
access  

(Zanaga et al., 2021) 

Hansen Global Forest 
Change 10% 

GFC-10% https://storage.googleapis.
com/earthenginepartners-
hansen/GFC-2023-
v1.11/download.html 

(Hansen et al., 2013) 

Hansen Global Forest 
Change 30% 

GFC-30% https://storage.googleapis.
com/earthenginepartners-
hansen/GFC-2023-
v1.11/download.html 

(Hansen et al., 2013) 

Forest extent, 2020 GLAD-Forest https://glad.umd.edu/data
set/GLCLUC2020  

(Potapov et al., 2022) 

ETH high-resolution maps of 
cocoa 

ETH-Cocoa https://www.research-
collection.ethz.ch/handle/
20.500.11850/654400  

(Kalischek et al., 2023) 

Global 30-meter Land Cover 
Change Dataset  

GLC_FCS30D https://gee-community-
catalog.org/projects/glc_fc
s/ 

(Liu et al., 2023) 

Global Pasture Watch GPW https://zenodo.org/records
/11281157  

(Parente et al., 2024) 

 

Carbon/biomass datasets 
Title Abbreviation Source Reference 

Satelligence Satelligence Closed dataset 
https://satelligence.com/ 

(Satelligence, 2024) 

Global Forest Carbon 
Fluxes  

GFCF https://gee-community-
catalog.org/projects/cflux/ 

(Harris et al., 2021) 

 

Tree canopy height 
Title Abbreviation Source Reference 
WRI & Meta Global 1m Tree Canopy Height Map WRI/Meta-GTCH https://gee-community-

catalog.org/projects/meta_trees
/#dataset-citation 

(Tolan et al., 
2024) 

ETH Global Sentinel-2 10m Canopy Height 
(2020) 

ETH-GTCH https://www.research-
collection.ethz.ch/handle/20.50

0.11850/609802 

(Lang et al., 
2023) 

Global Forest Canopy Height, 2019 UMD-GFCH https://glad.umd.edu/dataset/ge
di 

(Potapov et al., 
2021) 

 

  

https://esa-worldcover.org/en/data-access
https://esa-worldcover.org/en/data-access
https://esa-worldcover.org/en/data-access
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://glad.umd.edu/dataset/GLCLUC2020
https://glad.umd.edu/dataset/GLCLUC2020
https://www.research-collection.ethz.ch/handle/20.500.11850/654400
https://www.research-collection.ethz.ch/handle/20.500.11850/654400
https://www.research-collection.ethz.ch/handle/20.500.11850/654400
https://gee-community-catalog.org/projects/glc_fcs/
https://gee-community-catalog.org/projects/glc_fcs/
https://gee-community-catalog.org/projects/glc_fcs/
https://zenodo.org/records/11281157
https://zenodo.org/records/11281157
https://glad.umd.edu/dataset/gedi
https://glad.umd.edu/dataset/gedi


 

 
56 

 

Annex 2 1 

Annex 2 provides an overview of the characteristics of the selected datasets, including available land cover categories (F: Forest, C: Cocoa, 2 
NF: Non-forest natural lands), spatial resolution, time period, and the pre-processing steps applied for the analysis. 3 

Land cover datasets 4 

 Available 
categories 

Resolution Temporal 
coverage 

Pre-processing Licence Update 

Satelligence  F,C,NF 10m 2020 No processing Closed no clear 
schedule 

Official-CIV F,C,NF 10m 2020 Forest: dense forest, light 
forest, forest gallery, 
secondary forest/degraded 
forest, mangrove, forest 
plantation/reforestation, 
swamp forest/forest on 
hydromorphic soil, tree 
savannah 
Cacao: cocoa plantation 
Other natural: shrub 
formations/ thickets, 
herbaceous formations 
Other: all the other categories 

Creative Commons 
Attribution 4.0 International 

no clear 
schedule 

Official-GH F,C,NF 10m 2019 & 
2021(draft) 

Forest: close Forest, open 
forest, mangrove 
Cocoa:  mono cocoa, shaded 
cocoa 
Other natural:  grassland  
Other: all other categories 

Unknown no clear 
schedule 

FDaP C 10m 2020 Cocoa: cocoa probability 
model 2024a > 0.5 
Forest: not cocoa and forest 
Persistence v0 >0.95 
Other: all other pixels  

Creative Commons 
Attribution Non Commercial 
4.0 International 
Commercial access can be 
granted upon demand 

no clear 
schedule 
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SBTN-NL F,NF 30m 2020 Forest: natural forests, 
mangroves, wet natural 
forests, natural peat forests 
Other natural: natural short 
vegetation, wet natural short 
vegetation, natural peat short 
vegetation 
Other: all the other categories 

Creative Commons 
Attribution Share Alike 4.0 
International 

no clear 
schedule 

DW TC,NF 10m 2015 - 2025 Each pixel is assigned a class 
based on the highest 
probability and reclassified 
following the following rules 
Forest: Trees 
Other natural: grass, shrub 
and scrub 

Creative Commons 
Attribution 4.0 International 

2 weeks 

JRC-EU-V1 F 10m 2020 No processing All data are provided free-of 
charge, without restriction 
of use. For the full license 
information see the 
Copernicus Regulation of 
the European Commission. 

no clear 
schedule 

JRC-EU-V2  F 10m 2020 No processing All data are provided free-of 
charge, without restriction 
of use. For the full license 
information see the 
Copernicus Regulation of 
the European Commission. 

no clear 
schedule 

TMF F 30m 1990 - 2023 Forest: undisturbed tropical 
moist forest, degraded 
tropical moist forest, tropical 
moist forest regrowth 

  annually 
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ESA-WOC TC 10m 2020 - 2021 Forest:  tree cover, 
mangroves 
Other Natural:  shrubland, 
grassland, moss and lichen 

Creative Commons 
Attribution 4.0 International 

no clear 
schedule 

GFC-10% TC 30m 2000 – 
2023 

Forest: union of more than 
10% canopy cover and no loss 
observed before 2020 and 
tree gain 
Other: all other pixels 

Creative Commons 
Attribution 4.0 International 

annually 

GFC-30% TC 30m 2000 - 2023 Forest: union of more than 
30% canopy cover and no loss 
observed before 2020 and 
tree gain 
Other: all other pixels 

Creative Commons 
Attribution 4.0 International 

annually 

GLAD-Forest F 30m 2000 & 
2020 

No processing  Creative Commons 
Attribution License 

no clear 
schedule 

ETH-Cocoa C 10m 2020 No processing, used official 
cocoa/other dataset (0.65 
threshold) 

Creative Commons 
Attribution 4.0 International  

no clear 
schedule 

GLC_FCS30D F,NF 30m 1985-2000 
(every 5 
years), 
2000-2022 
annual 

Forest: all forest type and 
mangrove 
Other Natural: all shrubland, 
all sparse vegetation, swamp, 
marsh 
Other: all other class 

Creative Commons 
Attribution 4.0 International  

no clear 
schedule 

GPW  NF 30m 2000-2020 Other Natural: threshold: 
0.42 on natural/semi-natural 
dataset based on 
documentation. 

Creative Commons 
Attribution 4.0 International 

Update 
announced 
with no clear 
timeline, likely 
annually 

 5 
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Carbon/biomass datasets 6 

 Resolution Temporal coverage License Update 

Satelligence 10m 2001-2024 Closed annually 

GFCF  30m 2001-2023 Creative Commons Attribution 4.0 International License annually 

 7 

Tree canopy height 8 

 Resolution Temporal coverage License Update 

WRI/Meta-
GTCH 

1m composite of image 
between 2009-2020 

Creative Commons Attribution 4.0 International License no clear 
schedule 

ETH-GTCH 10m 2020  Creative Commons Attribution 4.0 International License no clear 
schedule 

UMD--GFCH 30m 2019 No license Update 
announced 
without timeline 

 9 
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Annex 3 
Annex 3 consists of an Excel file that provides a comprehensive overview of the quality assessment 
results for all evaluated datasets and platforms. This supplementary material contains detailed 
scoring and evaluation metrics across key assessment categories, including accuracy, 
completeness, data management, and inclusiveness. 

The Excel file is structured into multiple sheets, each corresponding to different dataset types (land 
cover, tree height, biomass/carbon monitoring) and platforms. It presents quantitative scores 
alongside explanatory notes to clarify specific strengths and limitations identified during the 
assessment. The final ranking of datasets and platforms is calculated using the weighted 
methodology described in the main report, ensuring transparency in how the results were derived. 

This annex serves as a detailed reference for users seeking in-depth insights into the performance of 
individual datasets and platforms, supporting informed decision-making in dataset selection and 
use. 

Annex 4 
Annex 4 consists of a detailed table summarizing the results of the independent accuracy 
assessment conducted on 19 different land cover maps, organized in alphabetical order for ease of 
reference. This annex provides a systematic evaluation of the accuracy of each dataset, ensuring a 
transparent comparison of their performance in key land cover categories. 

The table includes the following metrics for each assessed dataset: 

• Overall Accuracy: The percentage of correctly classified land cover across all categories. 

• Precision: The likelihood that a given land cover classification is correct. 

• Recall: The ability of the dataset to capture the full extent of a specific land cover type. 

• Class-Specific Performance: Accuracy breakdowns for key categories such as cocoa, 
forest, non-forest natural lands, and other land types. 

• Confidence Intervals: Statistical uncertainty ranges for precision and recall values to 
indicate the robustness of the assessment. 

 

dataset country category precision ci precision recall ci 
recall 

Composite civ other 71.99 11.42 81.01 9.55 
other 
natural 

48.83 35.65 32.93 27.56 
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forest 84.24 11.29 71.35 12.22 
cocoa 79.94 8.61 87.69 10.99 
overall 
accuracy 

75.21 6.97 
  

gh other 78.78 12.17 39.42 11.18 
other 
natural 

42.12 9.22 89.69 8.26 

forest 78.57 14.63 53.73 13.64 
cocoa 73.36 10.64 87.09 13.49 
overall 
accuracy 

59.62 6.75 
  

DW civ other 100 0 13.53 8.44 
other 
natural 

36.04 26.27 45.68 29.12 

forest 35.63 6.55 97.4 2.92 
overall 
accuracy 

41.05 7.24 
  

gh other 90.41 8.81 31.99 8.88 
other 
natural 

47.4 11.82 71.86 12.96 

forest 42.66 8.41 82.56 10.46 
overall 
accuracy 

53.25 6.68 
  

ESA-WOC civ other 88.89 20.74 13.6 8.48 
other 
natural 

29.29 15.29 79.87 21.75 

forest 35.78 7.68 79.55 9.59 
overall 
accuracy 

39.11 7.53 
  

gh other 95.27 6.41 33.83 9.06 
other 
natural 

43 9.38 91.82 7.69 

forest 41.28 10.12 56.09 13.86 
overall 
accuracy 

52.42 6.68 
  

ETH-Cocoa civ other 95.89 2.85 98.21 1.33 
cocoa 90.63 6.98 80.43 11.8 
overall 
accuracy 

95.07 2.62 
  

gh other 98.42 1.8 97.26 1.05 
cocoa 78.5 8.44 86.5 13.41 
overall 
accuracy 

96.15 1.86 
  

EU-JRC-V1 civ other 93.17 5.16 61.35 9.69 
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forest 48.47 9.16 88.99 8.02 
overall 
accuracy 

69.36 7.39 
  

gh other 97.66 2.32 72.21 5.77 
forest 51.49 8.97 94.46 5.43 
overall 
accuracy 

77.51 4.86 
  

EU-JRC-V2 civ other 90.69 6.34 81.45 8.06 
forest 63.74 11.56 79.59 11.92 
overall 
accuracy 

80.91 6.7 
  

gh other 95.44 2.85 82.47 5.75 
forest 62.54 11.19 88.13 7.35 
overall 
accuracy 

83.88 4.83 
  

GLAD-Forest civ other 94.38 7.38 38.2 9.96 
forest 38.97 7.01 94.55 7.01 
overall 
accuracy 

54.79 7.67 
  

gh other 97.59 2.66 72.53 5.44 
forest 51.75 8.63 94.26 6.27 
overall 
accuracy 

77.7 4.63 
  

GLAD-LC civ other 99.5 1.02 17.45 9.16 
other 
natural 

29 19.34 58.11 28.32 

forest 38.97 7.01 94.38 6.99 
overall 
accuracy 

43.74 7.4 
  

gh other 95.94 5.29 41.16 9.18 
other 
natural 

42.43 10.83 66.8 12.36 

forest 53.16 8.73 91.55 7.86 
overall 
accuracy 

59.19 6.51 
  

GLC-FCS30D civ other 91.87 10.69 12.03 7.71 
other 
natural 

41.35 42.08 23.98 28.05 

forest 32.44 6.19 95.03 4.04 
overall 
accuracy 

37.69 7.06 
  

gh other 99.85 0.31 18.52 7.79 
other 
natural 

36.64 13.16 41.45 14.36 



 

 
63 

 

forest 33.42 6.84 89.1 8.21 
overall 
accuracy 

40.87 6.61 
  

GPW civ other 92.58 4.53 99.62 0.65 
other 
natural 

23.4 39.07 1.45 2.15 

overall 
accuracy 

92.25 4.55 
  

gh other 82.55 4.82 96.65 2.96 
other 
natural 

53.94 28.82 16.12 11.05 

overall 
accuracy 

80.88 4.99 
  

FDaP civ other 67.54 7.11 94.67 5.35 
forest 60.62 15.92 33.99 11.93 
cocoa 96.41 4.25 44.26 12.24 
overall 
accuracy 

68.72 6.32 
  

gh other 74.32 5.18 98.04 2.1 
forest 67.79 17.77 24.37 12.08 
cocoa 82.1 14.58 25.03 9.59 
overall 
accuracy 

74.04 4.91 
  

GFC-10% civ other 92.44 10.49 26 9.24 
forest 35.11 6.38 94.96 6.95 
overall 
accuracy 

46.45 7.52 
  

gh other 99.36 0.89 41.51 7.42 
forest 36.04 6.94 99.2 1.12 
overall 
accuracy 

55.89 6.47 
  

GFC-30% civ other 77.64 7.77 62.56 8.75 
forest 38.05 9.09 56.07 12.58 
overall 
accuracy 

60.68 7.35 
  

gh other 84.07 4.95 82.83 4.14 
forest 43.61 11.64 45.83 13.94 
overall 
accuracy 

74.52 4.86 
  

National data civ other 77.12 8.21 84.02 7.25 
other 
natural 

100 0 0.72 1.48 

forest 73.33 9.85 80.73 11.82 
cocoa 72.24 13.98 41.09 11.79 
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overall 
accuracy 

75.4 5.96 
  

gh other 85.97 4.96 89.4 5.07 
other 
natural 

41.3 9.8 77.35 11.74 

forest 63.42 12.6 62.51 13.34 
cocoa 83.02 12.24 64.08 11.81 
overall 
accuracy 

80.64 4.81 
  

SBTN-NL civ other 84.66 8.63 68.99 10.19 
other 
natural 

36.29 27.83 33.52 28.04 

forest 57.22 11.12 81.41 11.28 
overall 
accuracy 

69.51 7.6 
  

gh other 82.82 6.28 74.96 8.36 
other 
natural 

49.01 15.73 43.25 14.09 

forest 66.08 11.3 86.76 8.2 
overall 
accuracy 

70.95 6.19 
  

Satelligence civ other 83.31 9.78 86.41 4.02 
other 
natural 

58 13.82 19.99 12.05 

forest 87.41 6.13 70.48 12.61 
cocoa 75.42 8.93 90.26 10.61 
overall 
accuracy 

82.53 5.89 
  

gh other 93.61 5.05 79.09 4.49 
other 
natural 

60 13.72 63.4 11.92 

forest 59.33 11.29 82.59 9.84 
cocoa 78.04 8.41 87.4 13.43 
overall 
accuracy 

80.76 4.71 
  

TMF civ other 76.82 6.81 86.74 5.08 
forest 49.61 12.08 32.51 10.07 
overall 
accuracy 

71.21 6.45 
  

gh other 82.13 5.89 70.68 6.71 
forest 47.48 12.6 34.11 12.96 
overall 
accuracy 

62.54 6.41 
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Annex 5 
Annex 5 consists of a detailed table summarizing the results of the independent accuracy 
assessment conducted on 19 different land cover maps, grouped by key categories (cocoa, forests 
and other naturasl lands) and organized in alphabetical order for ease of reference.  

The table includes the following metrics for each assessed dataset: 

• Precision: The likelihood that a given land cover classification is correct. 

• Recall: The ability of the dataset to capture the full extent of a specific land cover type. 

• Confidence Intervals: Statistical uncertainty ranges for precision and recall values to 
indicate the robustness of the assessment. 

Cocoa 
 

CIV 
 

GH 
 

Dataset precision recall precision recall 
Composite 80 ± 9 88 ± 11 73 ± 11 87 ± 13 
ETH-Cocoa 91 ± 7 80 ± 12 78 ± 8 87 ± 13 
FDaP 96 ± 4 44 ± 12 82 ± 15 25 ± 10 
National data 72 ± 14 41 ± 12 83 ± 12 64 ± 12 
Satelligence 75 ± 9 90 ± 11 78 ± 8 87 ± 13 

 

Forest 
 

CIV 
 

GH 
 

Dataset precision recall precision recall 
Composite 84 ± 11 71 ± 12 79 ± 15 54 ± 14 
DW 36 ± 7 97 ± 3 43 ± 8 83 ± 10 
ESA-WOC 36 ± 8 80 ± 10 41 ± 10 56 ± 14 
EU-JRC-V1 48 ± 9 89 ± 8 51 ± 9 94 ± 5 
EU-JRC-V2 64 ± 12 80 ± 12 63 ± 11 88 ± 7 
GLAD-Forest 39 ± 7 95 ± 7 52 ± 9 94 ± 6 
GLAD-LC 39 ± 7 94 ± 7 53 ± 9 92 ± 8 
GLC_FCS30D 32 ± 6 95 ± 4 33 ± 7 89 ± 8 
FDaP 61 ± 16 34 ± 12 68 ± 18 24 ± 12 
GFC-10% 35 ± 6 95 ± 7 36 ± 7 99 ± 1 
GFC-30% 38 ± 9 56 ± 13 44 ± 12 46 ± 14 
National data 73 ± 10 81 ± 12 63 ± 13 63 ± 13 
SBTN-NL 57 ± 11 81 ± 11 66 ± 11 87 ± 8 
Satelligence 87 ± 6 70 ± 13 59 ± 11 83 ± 10 
TMF 50 ± 12 33 ± 10 47 ± 13 34 ± 13 
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Other natural lands 
 

CIV GH 
Dataset precision recall precision recall 
Composite 49 ± 36 33 ± 28 42 ± 9 90 ± 8 
DW 36 ± 26 46 ± 29 47 ± 12 72 ± 

13 
ESA-WOC 29 ± 15 80 ± 22 43 ± 9 92 ± 8 
GLAD-LC 29 ± 19 58 ± 28 42 ± 11 67 ± 

12 
GLC_FCS30D 41 ± 42 24 ± 28 37 ± 13 41 ± 

14 
GPW 23 ± 39 1 ± 2 54 ± 29 16 ± 

11 
National data 100 ± 0 1 ± 1 41 ± 10 77 ± 

12 
SBTN-NL 36 ± 28 34 ± 28 49 ± 16 43 ± 

14 
Satelligence 58 ± 14 20 ± 12 60 ± 14 63 ± 

12 

 


